{"title":"Model, analyse and prevent fatal aircraft manoeuvres","authors":"Yves Nievergelt","doi":"10.1080/0020739x.2023.2249473","DOIUrl":null,"url":null,"abstract":"AbstractOn 24 June 1994 at Fairchild Air Force Base, during practice for an air show, a low-flying B-52H aircraft banked its wings vertically and crashed. Emphasizing the activity of modeling drag and gravity, these notes examine the possibility of recovery with several models. First, with algebra, historical data lead to a model where in a free fall near Earth's surface, the distance fallen is proportional to time squared. Calculus then gives an ordinary differential equation to model free fall near Earth's surface. Second, with calculus, historical data lead to various models of drag on objects moving through air. Third, combining models of drag and gravity with Newton's Laws of Motion leads to ordinary differential equations that model free fall in air. Fourth, predictions from such models with ordinary differential equations are consistent with the aircraft crash. Further models examine the possibility of increasing engine thrust to regain the vertical component of lift. All models fit in a first course in differential equations, without requiring any computational machinery. However, numerical experiments show how uninformed use of professional software can produce rounding errors to cause the modelled aircraft to plunge to the bottom of the deepest oceans and shoot up into space.KEYWORDS: Accelerationderivativedraginitial conditionsintegralpositionvelocity AcknowledgmentsThis work was supported in part by a Professional Leave from Eastern Washington University.Disclosure statementNo potential conflict of interest was reported by the author.","PeriodicalId":14026,"journal":{"name":"International Journal of Mathematical Education in Science and Technology","volume":"42 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Education in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0020739x.2023.2249473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractOn 24 June 1994 at Fairchild Air Force Base, during practice for an air show, a low-flying B-52H aircraft banked its wings vertically and crashed. Emphasizing the activity of modeling drag and gravity, these notes examine the possibility of recovery with several models. First, with algebra, historical data lead to a model where in a free fall near Earth's surface, the distance fallen is proportional to time squared. Calculus then gives an ordinary differential equation to model free fall near Earth's surface. Second, with calculus, historical data lead to various models of drag on objects moving through air. Third, combining models of drag and gravity with Newton's Laws of Motion leads to ordinary differential equations that model free fall in air. Fourth, predictions from such models with ordinary differential equations are consistent with the aircraft crash. Further models examine the possibility of increasing engine thrust to regain the vertical component of lift. All models fit in a first course in differential equations, without requiring any computational machinery. However, numerical experiments show how uninformed use of professional software can produce rounding errors to cause the modelled aircraft to plunge to the bottom of the deepest oceans and shoot up into space.KEYWORDS: Accelerationderivativedraginitial conditionsintegralpositionvelocity AcknowledgmentsThis work was supported in part by a Professional Leave from Eastern Washington University.Disclosure statementNo potential conflict of interest was reported by the author.
期刊介绍:
Mathematics is pervading every study and technique in our modern world, bringing ever more sharply into focus the responsibilities laid upon those whose task it is to teach it. Most prominent among these is the difficulty of presenting an interdisciplinary approach so that one professional group may benefit from the experience of others. The International Journal of Mathematical Education in Science and Technology provides a medium by which a wide range of experience in mathematical education can be presented, assimilated and eventually adapted to everyday needs in schools, colleges, polytechnics, universities, industry and commerce. Contributions will be welcomed from lecturers, teachers and users of mathematics at all levels on the contents of syllabuses and methods of presentation.