Variable projection support vector machines and some applications using adaptive Hermite expansions

Tamas Dozsa, Federico Deuschle, Bram Cornelis, Peter Kovacs
{"title":"Variable projection support vector machines and some applications using adaptive Hermite expansions","authors":"Tamas Dozsa, Federico Deuschle, Bram Cornelis, Peter Kovacs","doi":"10.1142/s0129065724500047","DOIUrl":null,"url":null,"abstract":"Summary: We introduce an extension of the classical support vector machine classification algorithm with adaptive orthogonal transformations. The proposed transformations are realized through so-called variable projection operators. This approach allows the classifier to learn an informative representation of the data during the training process. Furthermore, choosing the underlying adaptive transformations correctly allows for learning interpretable parameters. Since the gradients of the proposed transformations are known with respect to the learnable parameters, we focus on training the primal form the modified SVM objectives using a stochastic subgradient method. We consider the possibility of using Mercer kernels with the proposed algorithms. We construct a case study using the linear combinations of adaptive Hermite functions where the proposed classification scheme outperforms the classical support vector machine approach. The proposed variable projection support vector machines provide a lightweight alternative to deep learning methods which incorporate automatic feature extraction.","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"191 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129065724500047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: We introduce an extension of the classical support vector machine classification algorithm with adaptive orthogonal transformations. The proposed transformations are realized through so-called variable projection operators. This approach allows the classifier to learn an informative representation of the data during the training process. Furthermore, choosing the underlying adaptive transformations correctly allows for learning interpretable parameters. Since the gradients of the proposed transformations are known with respect to the learnable parameters, we focus on training the primal form the modified SVM objectives using a stochastic subgradient method. We consider the possibility of using Mercer kernels with the proposed algorithms. We construct a case study using the linear combinations of adaptive Hermite functions where the proposed classification scheme outperforms the classical support vector machine approach. The proposed variable projection support vector machines provide a lightweight alternative to deep learning methods which incorporate automatic feature extraction.
可变投影支持向量机和一些应用自适应Hermite展开
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信