Predictability of water resources with global climate models. Case of Northern Tunisia

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Mustapha Besbes, Jamel Chahed
{"title":"Predictability of water resources with global climate models. Case of Northern Tunisia","authors":"Mustapha Besbes, Jamel Chahed","doi":"10.5802/crgeos.219","DOIUrl":null,"url":null,"abstract":"The objective of the research is to explore the predictability of water resources directly with GCMs by analysing long-term effects of climate change on Northern Tunisia’s blue and green water. Hydrologic impacts rely on a rainfall-runoff lumped model using outputs of CMIP6 GCMs within the framework of the ssp2-45 scenario. Among the 30 CMIP6 models, the composite cnrm-esm2-1 and fgoals-g3 best restore observed runoff from 1995 to 2014 and give the best GCM. Hydrologic projections 2015–2100 show significant drops in rainfall (9%), runoff (21%), groundwater recharge (15%), as well as for green water (6%). The results show that the use of raw GCMs predictions on large basins is possible and provides precisions comparable to what is produced when using Regional Climate Models in medium size basins.","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crgeos.219","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the research is to explore the predictability of water resources directly with GCMs by analysing long-term effects of climate change on Northern Tunisia’s blue and green water. Hydrologic impacts rely on a rainfall-runoff lumped model using outputs of CMIP6 GCMs within the framework of the ssp2-45 scenario. Among the 30 CMIP6 models, the composite cnrm-esm2-1 and fgoals-g3 best restore observed runoff from 1995 to 2014 and give the best GCM. Hydrologic projections 2015–2100 show significant drops in rainfall (9%), runoff (21%), groundwater recharge (15%), as well as for green water (6%). The results show that the use of raw GCMs predictions on large basins is possible and provides precisions comparable to what is produced when using Regional Climate Models in medium size basins.
全球气候模式对水资源的可预测性。突尼斯北部个案
这项研究的目的是通过分析气候变化对突尼斯北部蓝水和绿水的长期影响,直接利用gcm探索水资源的可预测性。水文影响依赖于在ssp2-45情景框架内使用CMIP6 GCMs输出的降雨-径流集总模型。在30个CMIP6模型中,复合模型cnrm-esm2-1和fgoals-g3对1995 - 2014年观测径流量的恢复效果最好,GCM值最高。2015-2100年的水文预测显示,降雨量(9%)、径流(21%)、地下水补给(15%)和绿水(6%)显著下降。结果表明,在大流域使用原始GCMs预测是可能的,其精度与在中型流域使用区域气候模式所产生的精度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Geoscience
Comptes Rendus Geoscience 地学-地球科学综合
CiteScore
2.80
自引率
14.30%
发文量
68
审稿时长
5.9 weeks
期刊介绍: Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community. It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信