{"title":"Physics-based preconditioning of Jacobian-free Newton–Krylov solver for Navier–Stokes equations using nodal integral method","authors":"Nadeem Ahmed, Suneet Singh, Niteen Kumar","doi":"10.1002/fld.5236","DOIUrl":null,"url":null,"abstract":"<p>The nodal integral methods (NIMs) have found widespread use in the nuclear industry for neutron transport problems due to their high accuracy. However, despite considerable development, these methods have limited acceptability among the fluid flow community. One major drawback of these methods is the lack of robust and efficient nonlinear solvers for the algebraic equations resulting from discretization. Since its inception, several modifications have been made to make NIMs more agile, efficient, and accurate. Modified nodal integral method (MNIM) and modified MNIM (M<sup>2</sup>NIM) are the two most recent and efficient versions of the NIM for fluid flow problems. M<sup>2</sup>NIM modifies the MNIM by replacing the current time convective velocity with the previous time convective velocity, leading to faster convergence albeit with reduced accuracy. This work proposes a preconditioned Jacobian-free Newton–Krylov approach for solving the Navier–Stokes equation using MNIM. The Krylov solvers do not generally work well without an appropriate preconditioner. Therefore, M<sup>2</sup>NIM is used here as a preconditioner to accelerate the solution of MNIM. Due to pressure–velocity coupling in the Navier–Stokes equation, developing a quality preconditioner for these equations needs significant effort. The momentum equation is solved using the time-splitting alternate direction implicit method. The velocities obtained from the solution are then used to solve the pressure Poisson equation. The computational results for the Navier–Stokes equation are presented to underscore the advantages of the developed algorithm.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 2","pages":"138-160"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The nodal integral methods (NIMs) have found widespread use in the nuclear industry for neutron transport problems due to their high accuracy. However, despite considerable development, these methods have limited acceptability among the fluid flow community. One major drawback of these methods is the lack of robust and efficient nonlinear solvers for the algebraic equations resulting from discretization. Since its inception, several modifications have been made to make NIMs more agile, efficient, and accurate. Modified nodal integral method (MNIM) and modified MNIM (M2NIM) are the two most recent and efficient versions of the NIM for fluid flow problems. M2NIM modifies the MNIM by replacing the current time convective velocity with the previous time convective velocity, leading to faster convergence albeit with reduced accuracy. This work proposes a preconditioned Jacobian-free Newton–Krylov approach for solving the Navier–Stokes equation using MNIM. The Krylov solvers do not generally work well without an appropriate preconditioner. Therefore, M2NIM is used here as a preconditioner to accelerate the solution of MNIM. Due to pressure–velocity coupling in the Navier–Stokes equation, developing a quality preconditioner for these equations needs significant effort. The momentum equation is solved using the time-splitting alternate direction implicit method. The velocities obtained from the solution are then used to solve the pressure Poisson equation. The computational results for the Navier–Stokes equation are presented to underscore the advantages of the developed algorithm.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.