Modulating contact properties by molecular layers in organic thin-film transistors

Electron Pub Date : 2023-09-20 DOI:10.1002/elt2.7
Li Sun, Yating Li, Jiacheng Xie, Liqi Zhou, Peng Wang, Jian-Bin Xu, Yi Shi, Xinran Wang, Daowei He
{"title":"Modulating contact properties by molecular layers in organic thin-film transistors","authors":"Li Sun,&nbsp;Yating Li,&nbsp;Jiacheng Xie,&nbsp;Liqi Zhou,&nbsp;Peng Wang,&nbsp;Jian-Bin Xu,&nbsp;Yi Shi,&nbsp;Xinran Wang,&nbsp;Daowei He","doi":"10.1002/elt2.7","DOIUrl":null,"url":null,"abstract":"<p>Advanced organic devices and circuits demand both ultrahigh charge carrier mobilities and ultralow-resistance contacts. However, due to a larger access resistance in staggered organic thin-film transistors (OTFTs), the achievement of ultralow contact resistance () is still a challenge. The modulation of contact resistance by molecular layers near the interface has been rarely reported. Here, we demonstrate that few-layer organic single crystals are grown on hafnium oxide (HfO<sub>2</sub>) by solution-shearing epitaxy. We utilize these organic crystals to fabricate bottom-gate staggered OTFTs with different contact processes. The results show that the contact properties of OTFTs are obviously modulated by crystal layers. The tri-layer (3L) evaporated-Au C<sub>10</sub>-DNTT OTFTs exhibit optimal electrical performance, including ultralow of 5.6 Ω ∙ cm, recorded transfer length of 0.4 μm, field-effect mobility over 14 , threshold voltage lower than 0.3 V, and long-term air stability over 8 months. The main cause is that the metal atoms can penetrate into the charge transport layer, with damage-free, in 3L evaporated-Au OTFTs; nevertheless, it cannot be realized in other cases. Due to layer stacking of conjugated molecules and polymers, our strategy can efficiently modulate the contact resistance to aid the development of high-performance organic devices and circuits.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced organic devices and circuits demand both ultrahigh charge carrier mobilities and ultralow-resistance contacts. However, due to a larger access resistance in staggered organic thin-film transistors (OTFTs), the achievement of ultralow contact resistance () is still a challenge. The modulation of contact resistance by molecular layers near the interface has been rarely reported. Here, we demonstrate that few-layer organic single crystals are grown on hafnium oxide (HfO2) by solution-shearing epitaxy. We utilize these organic crystals to fabricate bottom-gate staggered OTFTs with different contact processes. The results show that the contact properties of OTFTs are obviously modulated by crystal layers. The tri-layer (3L) evaporated-Au C10-DNTT OTFTs exhibit optimal electrical performance, including ultralow of 5.6 Ω ∙ cm, recorded transfer length of 0.4 μm, field-effect mobility over 14 , threshold voltage lower than 0.3 V, and long-term air stability over 8 months. The main cause is that the metal atoms can penetrate into the charge transport layer, with damage-free, in 3L evaporated-Au OTFTs; nevertheless, it cannot be realized in other cases. Due to layer stacking of conjugated molecules and polymers, our strategy can efficiently modulate the contact resistance to aid the development of high-performance organic devices and circuits.

Abstract Image

用分子层调制有机薄膜晶体管的接触特性
先进的有机器件和电路需要超高的载流子迁移率和超低电阻接触。然而,由于交错有机薄膜晶体管(OTFTs)中较大的接触电阻,实现超低接触电阻()仍然是一个挑战。界面附近分子层对接触电阻的调制很少有报道。在这里,我们证明了通过溶液剪切外延在氧化铪(HfO 2)上生长出了几层有机单晶。我们利用这些有机晶体来制造具有不同接触工艺的底栅交错otft。结果表明,晶体层对OTFTs的接触特性有明显的调制作用。三层(3L)蒸发- Au - C - 10 - DNTT OTFTs具有最佳的电学性能,包括超低5.6 Ω∙cm,记录的转移长度为0.4 μm,场效应迁移率超过14,阈值电压低于0.3 V,以及超过8个月的长期空气稳定性。主要原因是在3L蒸发- Au otft中,金属原子可以无损伤地穿透到电荷输运层;然而,在其他情况下则无法实现。由于共轭分子和聚合物的层堆叠,我们的策略可以有效地调节接触电阻,以帮助开发高性能有机器件和电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信