Toward Deep Digital Contact Tracing: Opportunities and Challenges

IF 1.6 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Renato Cherini, Ramiro Detke, Juan Fraire, Pablo G. Madoery, Jorge M. Finochietto
{"title":"Toward Deep Digital Contact Tracing: Opportunities and Challenges","authors":"Renato Cherini, Ramiro Detke, Juan Fraire, Pablo G. Madoery, Jorge M. Finochietto","doi":"10.1109/mprv.2023.3320987","DOIUrl":null,"url":null,"abstract":"During the COVID-19 pandemic , digital contact tracing using mobile devices has been widely explored, with many proposals from academia and industry highlighting the benefits and challenges. Most approaches use Bluetooth low energy signals to learn and trace close contacts among users. However, tracing only these contacts can mask the risk of virus exposure in scenarios with low detection rates. To address this issue, we propose fostering users to exchange information beyond close contacts, particularly about prior “deep” contacts that may have transmitted the virus. This presents new opportunities for controlling the spread of the virus, but also poses challenges that require further investigation. We provide directions for addressing these challenges based on our recent work developing a technological solution using this approach.","PeriodicalId":55021,"journal":{"name":"IEEE Pervasive Computing","volume":"77 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mprv.2023.3320987","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

During the COVID-19 pandemic , digital contact tracing using mobile devices has been widely explored, with many proposals from academia and industry highlighting the benefits and challenges. Most approaches use Bluetooth low energy signals to learn and trace close contacts among users. However, tracing only these contacts can mask the risk of virus exposure in scenarios with low detection rates. To address this issue, we propose fostering users to exchange information beyond close contacts, particularly about prior “deep” contacts that may have transmitted the virus. This presents new opportunities for controlling the spread of the virus, but also poses challenges that require further investigation. We provide directions for addressing these challenges based on our recent work developing a technological solution using this approach.
迈向深度数字接触追踪:机遇与挑战
在2019冠状病毒病大流行期间,使用移动设备的数字接触者追踪得到了广泛探索,学术界和工业界提出了许多建议,强调了其好处和挑战。大多数方法使用蓝牙低能量信号来学习和追踪用户之间的密切接触。然而,在低检出率的情况下,仅追踪这些接触者可以掩盖病毒暴露的风险。为解决这一问题,我们建议鼓励用户交流密切接触者以外的信息,特别是关于可能传播病毒的先前“深度”接触者的信息。这为控制病毒传播提供了新的机会,但也提出了需要进一步调查的挑战。根据我们最近使用这种方法开发技术解决方案的工作,我们提供了解决这些挑战的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Pervasive Computing
IEEE Pervasive Computing 工程技术-电信学
CiteScore
4.10
自引率
0.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: IEEE Pervasive Computing explores the role of computing in the physical world–as characterized by visions such as the Internet of Things and Ubiquitous Computing. Designed for researchers, practitioners, and educators, this publication acts as a catalyst for realizing the ideas described by Mark Weiser in 1988. The essence of this vision is the creation of environments saturated with sensing, computing, and wireless communication that gracefully support the needs of individuals and society. Many key building blocks for this vision are now viable commercial technologies: wearable and handheld computers, wireless networking, location sensing, Internet of Things platforms, and so on. However, the vision continues to present deep challenges for experts in areas such as hardware design, sensor networks, mobile systems, human-computer interaction, industrial design, machine learning, data science, and societal issues including privacy and ethics. Through special issues, the magazine explores applications in areas such as assisted living, automotive systems, cognitive assistance, hardware innovations, ICT4D, manufacturing, retail, smart cities, and sustainability. In addition, the magazine accepts peer-reviewed papers of wide interest under a general call, and also features regular columns on hot topics and interviews with luminaries in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信