Effects of Manufacturing Tolerances on Double Wall Effusion Cooling

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Michael van de Noort, Peter T. Ireland, Janendra C. Telisinghe
{"title":"Effects of Manufacturing Tolerances on Double Wall Effusion Cooling","authors":"Michael van de Noort, Peter T. Ireland, Janendra C. Telisinghe","doi":"10.1115/1.4063731","DOIUrl":null,"url":null,"abstract":"Abstract As aeroengine designers seek to raise Turbine Entry Temperatures for greater thermal efficiencies, novel cooling schemes are required to ensure that components can survive in increasingly hotter environments. By utilising a combination of impingement cooling, pin-fin cooling and effusion cooling, Double-Wall Effusion Cooling is well equipped to achieve the high metal cooling effectiveness required for such challenges whilst keeping coolant consumption at an acceptably low level. However, this high performance can drop-off within the variability of common manufacturing tolerances, which can also expose cooling schemes to issues such as hot gas ingestion. This paper uses an experimentally validated Low Order Flow Network Model (LOM) to assess the cooling performance of a Double Wall Effusion Cooling scheme employed in a High Pressure Turbine Nozzle Guide Vane, subject to the variability of geometric parameters set by their manufacturing tolerances. The relative significance of each geometric parameter is examined by varying it individually and comparing the effects on the cooling performance. A Monte Carlo analysis is then conducted to assess the likelihood of performance variation for a baseline design. Finally, multiple optimisation studies are conducted for the cooling scheme, with the simultaneous objectives of reducing coolant usage and maximising the design tolerances to reduce manufacturing cost, all whilst maintaining acceptable metal cooling effectiveness and backflow margins.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"5 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063731","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract As aeroengine designers seek to raise Turbine Entry Temperatures for greater thermal efficiencies, novel cooling schemes are required to ensure that components can survive in increasingly hotter environments. By utilising a combination of impingement cooling, pin-fin cooling and effusion cooling, Double-Wall Effusion Cooling is well equipped to achieve the high metal cooling effectiveness required for such challenges whilst keeping coolant consumption at an acceptably low level. However, this high performance can drop-off within the variability of common manufacturing tolerances, which can also expose cooling schemes to issues such as hot gas ingestion. This paper uses an experimentally validated Low Order Flow Network Model (LOM) to assess the cooling performance of a Double Wall Effusion Cooling scheme employed in a High Pressure Turbine Nozzle Guide Vane, subject to the variability of geometric parameters set by their manufacturing tolerances. The relative significance of each geometric parameter is examined by varying it individually and comparing the effects on the cooling performance. A Monte Carlo analysis is then conducted to assess the likelihood of performance variation for a baseline design. Finally, multiple optimisation studies are conducted for the cooling scheme, with the simultaneous objectives of reducing coolant usage and maximising the design tolerances to reduce manufacturing cost, all whilst maintaining acceptable metal cooling effectiveness and backflow margins.
制造公差对双壁射流冷却的影响
随着航空发动机设计师寻求提高涡轮入口温度以获得更高的热效率,需要新的冷却方案来确保部件能够在越来越热的环境中生存。通过结合使用撞击冷却、鳍片冷却和射流冷却,双壁射流冷却系统装备良好,能够在满足此类挑战所需的高金属冷却效率的同时,将冷却剂消耗保持在可接受的低水平。然而,这种高性能可能会在通用制造公差的可变性内下降,这也可能使冷却方案暴露于诸如热气体摄入等问题。本文使用实验验证的低阶流网络模型(LOM)来评估高压涡轮喷嘴导叶中采用的双壁射流冷却方案的冷却性能,该方案受其制造公差设置的几何参数的可变性的影响。每个几何参数的相对重要性是通过单独改变和比较对冷却性能的影响来检验的。然后进行蒙特卡罗分析,以评估基线设计的性能变化的可能性。最后,对冷却方案进行了多次优化研究,同时以减少冷却剂的使用和最大化设计公差为目标,以降低制造成本,同时保持可接受的金属冷却效率和回流余量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信