{"title":"Privacy-preserving Neural Networks for Smart Manufacturing","authors":"Hankang Lee, Daniel Finke, Hui Yang","doi":"10.1115/1.4063728","DOIUrl":null,"url":null,"abstract":"Abstract The rapid advance in sensing technology has expedited data-driven innovation in manufacturing by allowing the collection of large amounts of data from factories. Big data provides an unprecedented opportunity for smart decision-making in the manufacturing process. However, they also attract cyberattacks due to the value of sensitive information. A cyberattack on manufacturing big data can lead to a significant loss of profits and unprecedented business disruption. Moreover, the increasing use of artificial intelligence (AI) in smart factories means that manufacturing equipment is now vulnerable to cyberattacks, posing a critical threat to smart manufacturing systems. Therefore, there is an urgent need to develop AI models that incorporate privacy-preserving methods to protect sensitive information implicit in the models against model inversion attacks. Hence this paper presents the development of a new approach called Mosaic Neuron Perturbation (MNP) to preserve latent information in the framework of the AI model, ensuring differential privacy requirements while mitigating the risk of model inversion attacks. MNP is flexible to implement into AI models, enabling a trade-off between model performance and robustness against cyberattacks while being highly scalable for large-scale computing. Experimental results, based on real-world manufacturing data collected from the CNC turning process, demonstrate that the proposed method significantly improves the prevention of inversion attacks while maintaining high prediction performance. The MNP method shows strong potential for making manufacturing systems both smart and secure by addressing the risk of data breaches while preserving the quality of AI models.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063728","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The rapid advance in sensing technology has expedited data-driven innovation in manufacturing by allowing the collection of large amounts of data from factories. Big data provides an unprecedented opportunity for smart decision-making in the manufacturing process. However, they also attract cyberattacks due to the value of sensitive information. A cyberattack on manufacturing big data can lead to a significant loss of profits and unprecedented business disruption. Moreover, the increasing use of artificial intelligence (AI) in smart factories means that manufacturing equipment is now vulnerable to cyberattacks, posing a critical threat to smart manufacturing systems. Therefore, there is an urgent need to develop AI models that incorporate privacy-preserving methods to protect sensitive information implicit in the models against model inversion attacks. Hence this paper presents the development of a new approach called Mosaic Neuron Perturbation (MNP) to preserve latent information in the framework of the AI model, ensuring differential privacy requirements while mitigating the risk of model inversion attacks. MNP is flexible to implement into AI models, enabling a trade-off between model performance and robustness against cyberattacks while being highly scalable for large-scale computing. Experimental results, based on real-world manufacturing data collected from the CNC turning process, demonstrate that the proposed method significantly improves the prevention of inversion attacks while maintaining high prediction performance. The MNP method shows strong potential for making manufacturing systems both smart and secure by addressing the risk of data breaches while preserving the quality of AI models.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping