Sebastian U. Busby, Angela M. Klock, Jeremy S. Fried
{"title":"Inventory analysis of fire effects wrought by wind-driven megafires in relation to weather and pre-fire forest structure in the western Cascades","authors":"Sebastian U. Busby, Angela M. Klock, Jeremy S. Fried","doi":"10.1186/s42408-023-00219-x","DOIUrl":null,"url":null,"abstract":"Abstract Background Six synchronous, wind-driven, high severity megafires burned over 300,000 hectares of mesic temperate forest in the western Cascades of NW Oregon and SW Washington states in early September 2020. While remote sensing data has been utilized to estimate fire severity across the fires, assessments of fire impacts informed by field observations are missing. We compiled field measurement data, pre- and post-fire, from a statistically representative sample of existing forest inventory analysis (FIA) plots, to estimate stand-level fire effects indices that describe (1) tree survival and its implications for carbon emissions, (2) effects on tree crowns, and (3) effects on soils. Field observations were analyzed in relation to fire weather when plots burned and to evaluate accuracy of remotely sensed burn severity classifications. Results Wind speed strongly interacted with tree size and stand age to influence tree survival. Under high fuel aridity but light winds, young stands composed of small trees, found primarily on private lands, exhibited a much lower survival rate than older stands composed of medium to large trees, found primarily on federal lands. Under moderate to high winds, poor tree survival was characteristic of all forest structures and ownerships. Fire impacts on tree crowns were strongly related to wind speed, while fire impacts on soils were not. These fires transferred nearly 70 MMT CO 2 e from wood in live and growing trees to a combination of immediate smoke and carbon emissions, plus delayed emissions from dead wood, that will release most of the embodied carbon over the next few decades. These emissions will exceed all 2020 anthropogenic emissions in Oregon (64 MMT CO 2 e). Substantial discrepancies were observed between two remotely sensed burn severity products, BAER-SBS and MTBS-TC, and field observed soil organic matter cover and tree mortality, respectively. Conclusions Post-fire FIA plot remeasurements are valuable for understanding fire’s impact on forest ecosystems and as an empirical basis for model validation and hypothesis testing. This continuous forest inventory system will compound the value of these post-fire remeasurements, enabling analysis of post-fire forest ecosystem trajectories in relation to both immediate fire impacts and pre-fire conditions.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42408-023-00219-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Background Six synchronous, wind-driven, high severity megafires burned over 300,000 hectares of mesic temperate forest in the western Cascades of NW Oregon and SW Washington states in early September 2020. While remote sensing data has been utilized to estimate fire severity across the fires, assessments of fire impacts informed by field observations are missing. We compiled field measurement data, pre- and post-fire, from a statistically representative sample of existing forest inventory analysis (FIA) plots, to estimate stand-level fire effects indices that describe (1) tree survival and its implications for carbon emissions, (2) effects on tree crowns, and (3) effects on soils. Field observations were analyzed in relation to fire weather when plots burned and to evaluate accuracy of remotely sensed burn severity classifications. Results Wind speed strongly interacted with tree size and stand age to influence tree survival. Under high fuel aridity but light winds, young stands composed of small trees, found primarily on private lands, exhibited a much lower survival rate than older stands composed of medium to large trees, found primarily on federal lands. Under moderate to high winds, poor tree survival was characteristic of all forest structures and ownerships. Fire impacts on tree crowns were strongly related to wind speed, while fire impacts on soils were not. These fires transferred nearly 70 MMT CO 2 e from wood in live and growing trees to a combination of immediate smoke and carbon emissions, plus delayed emissions from dead wood, that will release most of the embodied carbon over the next few decades. These emissions will exceed all 2020 anthropogenic emissions in Oregon (64 MMT CO 2 e). Substantial discrepancies were observed between two remotely sensed burn severity products, BAER-SBS and MTBS-TC, and field observed soil organic matter cover and tree mortality, respectively. Conclusions Post-fire FIA plot remeasurements are valuable for understanding fire’s impact on forest ecosystems and as an empirical basis for model validation and hypothesis testing. This continuous forest inventory system will compound the value of these post-fire remeasurements, enabling analysis of post-fire forest ecosystem trajectories in relation to both immediate fire impacts and pre-fire conditions.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.