Spatio-Temporal Graph Neural Network for Traffic Prediction Based on Adaptive Neighborhood Selection

IF 1.6 4区 工程技术 Q3 ENGINEERING, CIVIL
HuanZhong Sun, XiangHong Tang, JianGuang Lu, FangJie Liu
{"title":"Spatio-Temporal Graph Neural Network for Traffic Prediction Based on Adaptive Neighborhood Selection","authors":"HuanZhong Sun, XiangHong Tang, JianGuang Lu, FangJie Liu","doi":"10.1177/03611981231198851","DOIUrl":null,"url":null,"abstract":"Traffic prediction is critical to intelligent transportation and smart cities. The prediction performance of many existing traffic prediction models is limited by the fixed original graph structure and inappropriate spatio-temporal dependency extraction. For this situation, this paper proposes a spatio-temporal graph neural network based on adaptive neighborhood selection (STGNN-ANS). To obtain more flexible graph structures, STGNN-ANS designs a neighbor selection mechanism to generate a new graph structure by filtering inappropriate neighbors. To further capture the spatio-temporal dependence of traffic data, a spatio-temporal serial module of STGNN-ANS adopts the bidirectional learning manner of bidirectional long short-term memory (BiLSTM) and the graph convolution network (GCN) enhanced by self-attention mechanism to reach excellent prediction accuracy in both short-range and long-range scenarios. In this paper, a new baseline comprehensive comparison metric (BCCM) is invented to cope with the complexity in the comparative analysis of large numbers of experimental results. Many experiments have been performed on four real-world traffic datasets, and the results show that the comprehensive prediction performance of STGNN-ANS is better than previous models.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"160 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231198851","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic prediction is critical to intelligent transportation and smart cities. The prediction performance of many existing traffic prediction models is limited by the fixed original graph structure and inappropriate spatio-temporal dependency extraction. For this situation, this paper proposes a spatio-temporal graph neural network based on adaptive neighborhood selection (STGNN-ANS). To obtain more flexible graph structures, STGNN-ANS designs a neighbor selection mechanism to generate a new graph structure by filtering inappropriate neighbors. To further capture the spatio-temporal dependence of traffic data, a spatio-temporal serial module of STGNN-ANS adopts the bidirectional learning manner of bidirectional long short-term memory (BiLSTM) and the graph convolution network (GCN) enhanced by self-attention mechanism to reach excellent prediction accuracy in both short-range and long-range scenarios. In this paper, a new baseline comprehensive comparison metric (BCCM) is invented to cope with the complexity in the comparative analysis of large numbers of experimental results. Many experiments have been performed on four real-world traffic datasets, and the results show that the comprehensive prediction performance of STGNN-ANS is better than previous models.
基于自适应邻域选择的时空图神经网络交通预测
交通预测是智能交通和智慧城市的关键。现有的许多交通预测模型的预测性能受到固定的原始图结构和不适当的时空依赖提取的限制。针对这种情况,本文提出了一种基于自适应邻域选择的时空图神经网络(STGNN-ANS)。为了获得更灵活的图结构,STGNN-ANS设计了一种邻居选择机制,通过过滤不合适的邻居生成新的图结构。为了进一步捕捉交通数据的时空依赖性,STGNN-ANS的时空序列模块采用双向长短期记忆(BiLSTM)的双向学习方式和自注意机制增强的图卷积网络(GCN),在近程和长程场景下都达到了优异的预测精度。为了解决大量实验结果对比分析的复杂性,本文提出了一种新的基线综合比较度量(BCCM)。在4个真实交通数据集上进行了大量实验,结果表明STGNN-ANS的综合预测性能优于以往的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Research Record
Transportation Research Record 工程技术-工程:土木
CiteScore
3.20
自引率
11.80%
发文量
918
审稿时长
4.2 months
期刊介绍: Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信