Özay GÜLEŞ, Esra BİLİCİ, Emira KURBASEVIC, Ömer Faruk LENGER, Murat BOYACIOĞLU, Erkmen Tuğrul EPİKMEN
{"title":"Cytotoxic activity of TRPV4 antagonist RN-1734 in G-361 human melanoma cancer cell line","authors":"Özay GÜLEŞ, Esra BİLİCİ, Emira KURBASEVIC, Ömer Faruk LENGER, Murat BOYACIOĞLU, Erkmen Tuğrul EPİKMEN","doi":"10.17826/cumj.1324675","DOIUrl":null,"url":null,"abstract":"Purpose: Intracellular calcium (Ca2+) signaling plays a role in many cellular events, such as cell proliferation and differentiation, gene transcription, oxidative stress, the antioxidant system, and apoptosis. Transient receptor potential vanilloid 4 (TRPV4) channels are non-selective cation (Ca2+) channels. The present study aims to investigate the cytotoxic activity of RN-1734, a transient receptor potential vanilloid 4 (TRPV4) antagonist, in the G361 human melanoma cancer cell line. 
 Materials and Methods: The effects of RN-1734 on G361 cell viability at concentrations of 1, 5, 25, 50, and 100 μM were measured using the 3-(4,5-dimethylthiazol-2-il)-2,5-diphenyltetrazolium bromide (MTT) method. Total antioxidant status (TAS) and total oxidant status (TOS) levels were determined using a ready-made commercial kit, after which oxidative stress index (OSI) values were calculated. To determine the apoptotic effects of RN-1734, Bcl-2, Bax, and p53 expression levels, caspase-3 and -8 activities were examined via quantitative real-time PCR analysis. 
 Results: G361 cell viability significantly decreased to 82.72, 72.81, 56.36, 39.16 and 18.96% in RN-1734 groups (1, 5, 25, 50 and 100 μM) compared to the control group (100.00%). At IC50 concentration (39.48 μM), RN-1734 application (3.35 mmol/g prot.-TAS, 45.87 μmol/g prot.-TOS, and 1501.97 AU-OSI) increased the TAS level (2.17 mmol/g prot.) and decreased the TOS level (55.41 μmol/g prot.) and OSI value (3142.76 AU) compared to the control group. 
 Conclusion: Our findings show that RN-1734 may be a novel therapeutic approach to treating melanoma by decreasing the cell viability of G361 human melanoma cancer cells.","PeriodicalId":10748,"journal":{"name":"Cukurova Medical Journal","volume":"2013 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cukurova Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17826/cumj.1324675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Intracellular calcium (Ca2+) signaling plays a role in many cellular events, such as cell proliferation and differentiation, gene transcription, oxidative stress, the antioxidant system, and apoptosis. Transient receptor potential vanilloid 4 (TRPV4) channels are non-selective cation (Ca2+) channels. The present study aims to investigate the cytotoxic activity of RN-1734, a transient receptor potential vanilloid 4 (TRPV4) antagonist, in the G361 human melanoma cancer cell line.
Materials and Methods: The effects of RN-1734 on G361 cell viability at concentrations of 1, 5, 25, 50, and 100 μM were measured using the 3-(4,5-dimethylthiazol-2-il)-2,5-diphenyltetrazolium bromide (MTT) method. Total antioxidant status (TAS) and total oxidant status (TOS) levels were determined using a ready-made commercial kit, after which oxidative stress index (OSI) values were calculated. To determine the apoptotic effects of RN-1734, Bcl-2, Bax, and p53 expression levels, caspase-3 and -8 activities were examined via quantitative real-time PCR analysis.
Results: G361 cell viability significantly decreased to 82.72, 72.81, 56.36, 39.16 and 18.96% in RN-1734 groups (1, 5, 25, 50 and 100 μM) compared to the control group (100.00%). At IC50 concentration (39.48 μM), RN-1734 application (3.35 mmol/g prot.-TAS, 45.87 μmol/g prot.-TOS, and 1501.97 AU-OSI) increased the TAS level (2.17 mmol/g prot.) and decreased the TOS level (55.41 μmol/g prot.) and OSI value (3142.76 AU) compared to the control group.
Conclusion: Our findings show that RN-1734 may be a novel therapeutic approach to treating melanoma by decreasing the cell viability of G361 human melanoma cancer cells.