Simultaneous degradation efficiency of C-MFCs for three pollutants in aquaculture wastewater

IF 1.2 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
{"title":"Simultaneous degradation efficiency of C-MFCs for three pollutants in aquaculture wastewater","authors":"","doi":"10.30955/gnj.005149","DOIUrl":null,"url":null,"abstract":"<p>Chlorella microbial fuel cells may be an alternative technology for wastewater treatment. Using microalgae and activated sludge as raw materials, a C-MFCs was established, and the effects of different nitrogen and phosphorus ratios in the influent on the electrochemical performance of C-MFCs and the removal effect of NH3-N, COD and TP were investigated. The results show that when N:P=3:1 and the external resistance is 1000 Ω, the removal rates of NH3-N, COD and TP are 72.48±1.94%, 81.26±4.4% and 65.62%±2.14%, respectively, and the highest chlorophyll a content is 108.82 mg/L. The maximum voltage and maximum power 92.94 mV and 234.01 mW/m2. The microbial community structure in the anode chamber was analyzed and the results are as follows: At N:P=3:1, the dominant bacteria at the genus level in the anode chamber were Klebsiella (32.12%) and Prevotella (14.45%). The number of OTUs in the anode chamber changes under different N:P conditions. It can be concluded that N:P affects the power generation capacity of C-MFCs and the removal of NH3-N, COD and TP. Overall,when N:P=3:1, the C-MFCs had the best power production capacity and the removal of NH3-N, COD and TP. Regulation of N:P in aquaculture wastewater is an effective way to improve performance of C-MFCs.</p>&#x0D;","PeriodicalId":55087,"journal":{"name":"Global Nest Journal","volume":"7 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nest Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.005149","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorella microbial fuel cells may be an alternative technology for wastewater treatment. Using microalgae and activated sludge as raw materials, a C-MFCs was established, and the effects of different nitrogen and phosphorus ratios in the influent on the electrochemical performance of C-MFCs and the removal effect of NH3-N, COD and TP were investigated. The results show that when N:P=3:1 and the external resistance is 1000 Ω, the removal rates of NH3-N, COD and TP are 72.48±1.94%, 81.26±4.4% and 65.62%±2.14%, respectively, and the highest chlorophyll a content is 108.82 mg/L. The maximum voltage and maximum power 92.94 mV and 234.01 mW/m2. The microbial community structure in the anode chamber was analyzed and the results are as follows: At N:P=3:1, the dominant bacteria at the genus level in the anode chamber were Klebsiella (32.12%) and Prevotella (14.45%). The number of OTUs in the anode chamber changes under different N:P conditions. It can be concluded that N:P affects the power generation capacity of C-MFCs and the removal of NH3-N, COD and TP. Overall,when N:P=3:1, the C-MFCs had the best power production capacity and the removal of NH3-N, COD and TP. Regulation of N:P in aquaculture wastewater is an effective way to improve performance of C-MFCs.

c - mfc对水产养殖废水中三种污染物的同时降解效率
小球藻微生物燃料电池可能是废水处理的一种替代技术。以微藻和活性污泥为原料,建立了c - mfc,考察了进水中不同氮磷比对c - mfc电化学性能的影响以及对NH3-N、COD和TP的去除效果。结果表明,当N:P=3:1,外阻为1000 Ω时,对NH3-N、COD和TP的去除率分别为72.48±1.94%、81.26±4.4%和65.62%±2.14%,叶绿素a含量最高为108.82 mg/L。最大电压和最大功率分别为92.94 mV和234.01 mW/m2。对阳极室微生物群落结构进行分析,结果表明:在N:P=3:1时,阳极室属水平的优势菌为克雷伯菌(32.12%)和普雷沃氏菌(14.45%);在不同的N:P条件下,阳极腔内的otu数会发生变化。综上所述,N:P影响c - mfc的发电能力,影响NH3-N、COD和TP的去除率。总体而言,当N:P=3:1时,c - mfc的产电能力和对NH3-N、COD和TP的去除率最好。调控养殖废水中的氮磷是提高c - mfc性能的有效途径。</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Nest Journal
Global Nest Journal 环境科学-环境科学
CiteScore
1.50
自引率
9.10%
发文量
100
审稿时长
>12 weeks
期刊介绍: Global Network of Environmental Science and Technology Journal (Global NEST Journal) is a scientific source of information for professionals in a wide range of environmental disciplines. The Journal is published both in print and online. Global NEST Journal constitutes an international effort of scientists, technologists, engineers and other interested groups involved in all scientific and technological aspects of the environment, as well, as in application techniques aiming at the development of sustainable solutions. Its main target is to support and assist the dissemination of information regarding the most contemporary methods for improving quality of life through the development and application of technologies and policies friendly to the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信