Challenges in electrical detection of spin-orbit torque in Ir20Mn80/Pt hetero-structures

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ilkin Goksal, Hasan Piskin, Bayram Kocaman, Kutay Akın, Dogukan Cay, Ege Selvi, Vedat Karakas, Sergi Lendinez, Hilal Saglam, Yi Li, John E. Pearson, Ralu Divan, Wei Zhang, Valentine Novosad, Axel Hoffmann, Ozhan Ozatay
{"title":"Challenges in electrical detection of spin-orbit torque in Ir20Mn80/Pt hetero-structures","authors":"Ilkin Goksal, Hasan Piskin, Bayram Kocaman, Kutay Akın, Dogukan Cay, Ege Selvi, Vedat Karakas, Sergi Lendinez, Hilal Saglam, Yi Li, John E. Pearson, Ralu Divan, Wei Zhang, Valentine Novosad, Axel Hoffmann, Ozhan Ozatay","doi":"10.3233/jae-220298","DOIUrl":null,"url":null,"abstract":"Manipulation of antiferromagnetic sublattice orientations, a key challenge in spintronic device applications, requires unconventional methods such as current induced torques including Spin Transfer Torque (STT) and Spin-Orbit Torque (SOT). In order to observe the deviation of the Néel vector from the anisotropy axis, one of the simplest approaches is the electrical detection, whereby one monitors the change in resistance as a function of applied current. In this work, we have investigated the conditions under which an ultra-thin metallic antiferromagnet, Ir20Mn80 becomes susceptible to SOT effects by studying antiferromagnetic layer structure and thickness dependence in antiferromagnetic metal (Ir20Mn80)/heavy metal (Pt) superlattices. Our electrical measurements reveal that in bilayer structures there exists a shallow range of Ir20Mn80 thicknesses (∼1–2 nm) for which SOT driven control of spins is apparent, whereas for lower thicknesses incomplete sublattice formation and for higher thicknesses improved thermal stability prohibits vulnerability to spin currents. Furthermore, in multilayers, structural changes in Ir20Mn80 layer quenches local torques due to stronger (111) magnetocrystalline anisotropy. These results suggest that an exhaustive optimization of the antiferromagnet parameters is crucial for the successful deployment of spintronic devices.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"147 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jae-220298","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulation of antiferromagnetic sublattice orientations, a key challenge in spintronic device applications, requires unconventional methods such as current induced torques including Spin Transfer Torque (STT) and Spin-Orbit Torque (SOT). In order to observe the deviation of the Néel vector from the anisotropy axis, one of the simplest approaches is the electrical detection, whereby one monitors the change in resistance as a function of applied current. In this work, we have investigated the conditions under which an ultra-thin metallic antiferromagnet, Ir20Mn80 becomes susceptible to SOT effects by studying antiferromagnetic layer structure and thickness dependence in antiferromagnetic metal (Ir20Mn80)/heavy metal (Pt) superlattices. Our electrical measurements reveal that in bilayer structures there exists a shallow range of Ir20Mn80 thicknesses (∼1–2 nm) for which SOT driven control of spins is apparent, whereas for lower thicknesses incomplete sublattice formation and for higher thicknesses improved thermal stability prohibits vulnerability to spin currents. Furthermore, in multilayers, structural changes in Ir20Mn80 layer quenches local torques due to stronger (111) magnetocrystalline anisotropy. These results suggest that an exhaustive optimization of the antiferromagnet parameters is crucial for the successful deployment of spintronic devices.
Ir20Mn80/Pt异质结构自旋轨道转矩电检测的挑战
反铁磁亚晶格取向的控制是自旋电子器件应用中的一个关键挑战,需要非常规的方法,如电流感应扭矩,包括自旋转移扭矩(STT)和自旋轨道扭矩(SOT)。为了观察nsamel矢量与各向异性轴的偏差,最简单的方法之一是电检测,即监测电阻的变化作为施加电流的函数。在这项工作中,我们通过研究反铁磁金属(Ir20Mn80)/重金属(Pt)超晶格中的反铁磁层结构和厚度依赖关系,研究了超薄金属反铁磁Ir20Mn80易受SOT效应影响的条件。我们的电学测量表明,在双层结构中,存在一个较浅的Ir20Mn80厚度范围(~ 1-2 nm), SOT驱动的自旋控制是明显的,而对于较低厚度的不完全亚晶格形成和较高厚度的改进热稳定性阻止了自旋电流的易感。此外,在多层结构中,Ir20Mn80层的结构变化由于更强的磁晶各向异性而淬灭了局部力矩。这些结果表明,反铁磁体参数的彻底优化对于成功部署自旋电子器件至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信