Martha S. Gilmore, M. Darby Dyar, Nils Mueller, Jérémy Brossier, Alison R. Santos, Mikhail Ivanov, Richard Ghail, Justin Filiberto, Jörn Helbert
{"title":"Mineralogy of the Venus Surface","authors":"Martha S. Gilmore, M. Darby Dyar, Nils Mueller, Jérémy Brossier, Alison R. Santos, Mikhail Ivanov, Richard Ghail, Justin Filiberto, Jörn Helbert","doi":"10.1007/s11214-023-00988-6","DOIUrl":null,"url":null,"abstract":"Abstract Surface mineralogy records the primary composition, climate history and the geochemical cycling between the surface and atmosphere. We have not yet directly measured mineralogy on the Venus surface in situ, but a variety of independent investigations yield a basic understanding of surface composition and weathering reactions in the present era where rocks react under a supercritical atmosphere dominated by CO 2 , N 2 and SO 2 at ∼460 °C and 92 bars. The primary composition of the volcanic plains that cover ∼80% of the surface is inferred to be basaltic, as measured by the 7 Venera and Vega landers and consistent with morphology. These landers also recorded elevated SO 3 values, low rock densities and spectral signatures of hematite consistent with chemical weathering under an oxidizing environment. Thermodynamic modeling and laboratory experiments under present day atmospheric conditions predict and demonstrate reactions where Fe, Ca, Na in rocks react primarily with S species to form sulfates, sulfides and oxides. Variations in surface emissivity at ∼1 μm detected by the VIRTIS instrument on the Venus Express orbiter are spatially correlated to geologic terrains. Laboratory measurements of the near-infrared (NIR) emissivity of geologic materials at Venus surface temperatures confirms theoretical predictions that 1 μm emissivity is directly related to Fe 2+ content in minerals. These data reveal regions of high emissivity that may indicate unweathered and recently erupted basalts and low emissivity associated with tessera terrain that may indicate felsic materials formed during a more clement era. Magellan radar emissivity also constrain mineralogy as this parameter is inversely related to the type and volume of high dielectric minerals, likely to have formed due to surface/atmosphere reactions. The observation of both viscous and low viscosity volcanic flows in Magellan images may also be related to composition. The global NIR emissivity and high-resolution radar and topography collected by the VERITAS, EnVision and DAVINCI missions will provide a revolutionary advancement of these methods and our understanding of Venus mineralogy. Critically, these datasets must be supported with both laboratory experiments to constrain the style and rate weathering reactions and laboratory measurements of their NIR emissivity and radar characteristics at Venus conditions.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"46 1","pages":"0"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-00988-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Surface mineralogy records the primary composition, climate history and the geochemical cycling between the surface and atmosphere. We have not yet directly measured mineralogy on the Venus surface in situ, but a variety of independent investigations yield a basic understanding of surface composition and weathering reactions in the present era where rocks react under a supercritical atmosphere dominated by CO 2 , N 2 and SO 2 at ∼460 °C and 92 bars. The primary composition of the volcanic plains that cover ∼80% of the surface is inferred to be basaltic, as measured by the 7 Venera and Vega landers and consistent with morphology. These landers also recorded elevated SO 3 values, low rock densities and spectral signatures of hematite consistent with chemical weathering under an oxidizing environment. Thermodynamic modeling and laboratory experiments under present day atmospheric conditions predict and demonstrate reactions where Fe, Ca, Na in rocks react primarily with S species to form sulfates, sulfides and oxides. Variations in surface emissivity at ∼1 μm detected by the VIRTIS instrument on the Venus Express orbiter are spatially correlated to geologic terrains. Laboratory measurements of the near-infrared (NIR) emissivity of geologic materials at Venus surface temperatures confirms theoretical predictions that 1 μm emissivity is directly related to Fe 2+ content in minerals. These data reveal regions of high emissivity that may indicate unweathered and recently erupted basalts and low emissivity associated with tessera terrain that may indicate felsic materials formed during a more clement era. Magellan radar emissivity also constrain mineralogy as this parameter is inversely related to the type and volume of high dielectric minerals, likely to have formed due to surface/atmosphere reactions. The observation of both viscous and low viscosity volcanic flows in Magellan images may also be related to composition. The global NIR emissivity and high-resolution radar and topography collected by the VERITAS, EnVision and DAVINCI missions will provide a revolutionary advancement of these methods and our understanding of Venus mineralogy. Critically, these datasets must be supported with both laboratory experiments to constrain the style and rate weathering reactions and laboratory measurements of their NIR emissivity and radar characteristics at Venus conditions.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.