Bin Liu, Hanqing Song, Yan Wang, Lei Liu, Mingguang Shan, Zhi Zhong, Lei Yu
{"title":"Spectral demodulation method for high fineness F-P sensors","authors":"Bin Liu, Hanqing Song, Yan Wang, Lei Liu, Mingguang Shan, Zhi Zhong, Lei Yu","doi":"10.1117/1.oe.63.3.031003","DOIUrl":null,"url":null,"abstract":"We propose a white-light interferometric demodulation algorithm for high-finesse fiber-optic F-P sensors, in order to improve the demodulation accuracy and the dynamic range encountered in traditional demodulation techniques. The interferometric spectral signal of the high-finesse F-P cavity was converted to the frequency domain and then a more accurate cavity length was estimated based on full phase on higher-order components. A detailed theoretical analysis was operated. A high-finesse F-P temperature sensor based on a silicon diaphragm was fabricated and tested to verify the proposed method. The demodulation accuracy increases with the increase of order, and the anti-noise performance is improved. For the third-order component, the optical path difference sensitivity obtained by this algorithm is 0.231 ± 0.0188 μm / ° C, and the average error rate of cavity length demodulation value is 0.0152%. The proposed algorithm is applicable to demodulate the high-finesse F-P cavities in the light source bandwidth of 1525 to 1575 nm, providing high accuracy and improved anti-noise performance.","PeriodicalId":19561,"journal":{"name":"Optical Engineering","volume":"7 8","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.oe.63.3.031003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a white-light interferometric demodulation algorithm for high-finesse fiber-optic F-P sensors, in order to improve the demodulation accuracy and the dynamic range encountered in traditional demodulation techniques. The interferometric spectral signal of the high-finesse F-P cavity was converted to the frequency domain and then a more accurate cavity length was estimated based on full phase on higher-order components. A detailed theoretical analysis was operated. A high-finesse F-P temperature sensor based on a silicon diaphragm was fabricated and tested to verify the proposed method. The demodulation accuracy increases with the increase of order, and the anti-noise performance is improved. For the third-order component, the optical path difference sensitivity obtained by this algorithm is 0.231 ± 0.0188 μm / ° C, and the average error rate of cavity length demodulation value is 0.0152%. The proposed algorithm is applicable to demodulate the high-finesse F-P cavities in the light source bandwidth of 1525 to 1575 nm, providing high accuracy and improved anti-noise performance.
期刊介绍:
Optical Engineering publishes peer-reviewed papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.