Singularity structure optimization for hexahedral mesh via dual operations

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chun Shen, Rui Wang
{"title":"Singularity structure optimization for hexahedral mesh via dual operations","authors":"Chun Shen, Rui Wang","doi":"10.1115/1.4063402","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an improved method for optimizing the singularity structure of hexahedral meshes using various dual operations. Our approach aims at reducing element distortion by decomposing complex singular nodes into singular curves using high-quality sheet insertion at proper locations. Then, singular curves that meet the topological parallel requirements are paired to perform the semantic column operation, which eliminates the singular curves. Finally, the topological structure is further optimized by collapsing sheets, resulting in a valid hex mesh with a simpler structure. Compared to existing hexahedral mesh simplification methods, our approach can generate higher quality meshes. Experimental results demonstrate the effectiveness of the proposed method.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063402","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents an improved method for optimizing the singularity structure of hexahedral meshes using various dual operations. Our approach aims at reducing element distortion by decomposing complex singular nodes into singular curves using high-quality sheet insertion at proper locations. Then, singular curves that meet the topological parallel requirements are paired to perform the semantic column operation, which eliminates the singular curves. Finally, the topological structure is further optimized by collapsing sheets, resulting in a valid hex mesh with a simpler structure. Compared to existing hexahedral mesh simplification methods, our approach can generate higher quality meshes. Experimental results demonstrate the effectiveness of the proposed method.
基于二元运算的六面体网格奇异结构优化
提出了一种利用各种对偶运算优化六面体网格奇异结构的改进方法。我们的方法旨在通过在适当的位置使用高质量的片插入将复杂的奇异节点分解成奇异曲线来减少元素畸变。然后,将满足拓扑并行要求的奇异曲线配对,进行语义列运算,消除奇异曲线;最后,通过折叠片进一步优化拓扑结构,得到结构更简单的有效十六进制网格。与现有的六面体网格简化方法相比,我们的方法可以生成更高质量的网格。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信