{"title":"Effect of Erbium:YAG Laser Recycling on Mechanical Characteristics of Retrieved Orthodontic Mini-screws","authors":"Soghra Yassaei, Hossien Agha Aghili, Atie Behrouzirad","doi":"10.34172/jlms.2023.42","DOIUrl":null,"url":null,"abstract":"Introduction: This study aimed to evaluate the influence of two recycling methods on the mechanical and surface characteristics of orthodontic mini-screws. Methods: Thirty-six retrieved mini-screws were randomly classified into two equal groups. In the first group (laser recycled group (LG)), the Er:YAG laser (2940 nm, 5.5 W, 275 mJ, perpendicular to the mini-screws at a distance of 7-10 mm, 25 s) was used to recycle mini-screws. In the second group (phosphoric acid and sodium hypochlorite recycled group (ASG)), the mini-screws were kept in 37% phosphoric acid gel (10 minutes) and then placed in 5.25% sodium hypochlorite for 30 minutes. Eighteen new mini-screws were selected as the control group (CG). Maximum insertion torque (MIT), maximum removal torque (MRT), and fracture torque (FT) of all mini-screws were measured. A sample from each group was examined for the surface changes of the mini-screw and tissue remnants under a scanning electron microscope (SEM). Results: The mean MIT was significantly higher in both LG and ASG groups than the CG (P<0.001 and P=0.002, respectively). However, no significant difference was shown between the LG and ASG groups. The mean values of MRT and FT showed no significant difference between the groups. The amount of tissue remnants in the ASG group was significantly higher than that in the LG group. The evidence of porosity and corrosion was observed on the ASG mini-screw surface, and there was an increase in roughness on the LG mini-screw surface. Conclusion: The Er:YAG laser recycling of mini-screws is a proper method causing minimum damage to the screw surface.","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2023.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study aimed to evaluate the influence of two recycling methods on the mechanical and surface characteristics of orthodontic mini-screws. Methods: Thirty-six retrieved mini-screws were randomly classified into two equal groups. In the first group (laser recycled group (LG)), the Er:YAG laser (2940 nm, 5.5 W, 275 mJ, perpendicular to the mini-screws at a distance of 7-10 mm, 25 s) was used to recycle mini-screws. In the second group (phosphoric acid and sodium hypochlorite recycled group (ASG)), the mini-screws were kept in 37% phosphoric acid gel (10 minutes) and then placed in 5.25% sodium hypochlorite for 30 minutes. Eighteen new mini-screws were selected as the control group (CG). Maximum insertion torque (MIT), maximum removal torque (MRT), and fracture torque (FT) of all mini-screws were measured. A sample from each group was examined for the surface changes of the mini-screw and tissue remnants under a scanning electron microscope (SEM). Results: The mean MIT was significantly higher in both LG and ASG groups than the CG (P<0.001 and P=0.002, respectively). However, no significant difference was shown between the LG and ASG groups. The mean values of MRT and FT showed no significant difference between the groups. The amount of tissue remnants in the ASG group was significantly higher than that in the LG group. The evidence of porosity and corrosion was observed on the ASG mini-screw surface, and there was an increase in roughness on the LG mini-screw surface. Conclusion: The Er:YAG laser recycling of mini-screws is a proper method causing minimum damage to the screw surface.
期刊介绍:
The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)