{"title":"Anomeric specificity and kinetics of glucokinase: theoretical unsuitability of the Hill equation.","authors":"W J Malaisse, D Zähner, G Marynissen","doi":"10.3109/13813458909104555","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of the low-Km hexokinase isoenzymes, which obey the Michaelis-Menten equation, can be established from the Km (Michaelis constant) and Vmax (maximal velocity) values for either equilibrated D-glucose or its alpha- and beta-anomers. In the case of the high-Km glucokinase isoenzyme, however, the sigmoidal substrate dependency and the competition between the two anomers of D-glucose do not allow, theoretically, to assign any meaningful value to either the Km, Vmax or n (Hill number) constants for equilibrated D-glucose. Thus, with equilibrated D-glucose, the concentration dependency fails to display a rectilinear relationship in the Hill plot. These observations illustrate the shortcomings of current biochemical studies in which the anomeric heterogeneity of D-glucose is ignored.</p>","PeriodicalId":8170,"journal":{"name":"Archives internationales de physiologie et de biochimie","volume":"97 5","pages":"417-25"},"PeriodicalIF":0.0000,"publicationDate":"1989-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/13813458909104555","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de physiologie et de biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/13813458909104555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The kinetics of the low-Km hexokinase isoenzymes, which obey the Michaelis-Menten equation, can be established from the Km (Michaelis constant) and Vmax (maximal velocity) values for either equilibrated D-glucose or its alpha- and beta-anomers. In the case of the high-Km glucokinase isoenzyme, however, the sigmoidal substrate dependency and the competition between the two anomers of D-glucose do not allow, theoretically, to assign any meaningful value to either the Km, Vmax or n (Hill number) constants for equilibrated D-glucose. Thus, with equilibrated D-glucose, the concentration dependency fails to display a rectilinear relationship in the Hill plot. These observations illustrate the shortcomings of current biochemical studies in which the anomeric heterogeneity of D-glucose is ignored.