{"title":"Total Bias in Income Surveys when Nonresponse and Measurement Errors are Correlated","authors":"Andrea Neri, Eleonora Porreca","doi":"10.1093/jssam/smad027","DOIUrl":null,"url":null,"abstract":"Abstract Household surveys on income might suffer from quality limitations mainly due to the difficulty of enrolling households (unit nonresponse) and retrieving correct information during the interview (measurement error [ME]). These errors are likely to be correlated because of latent factors, such as the threat of disclosing personal information, the perceived sensitivity of the topic, or social desirability. For survey organizations, assessing the interplay of these errors and their impact on the accuracy and precision of inferences derived from their data is crucial. In this article, we propose to use a standard sample selection model within a total survey error framework to deal with the case of correlated nonresponse error (NR) and ME in estimating average household income. We use it to study the correlation between the two errors, quantify the ME component due to this correlation, and evaluate ME among nonrespondents. Using the Italian Survey on Income and Wealth linked with administrative income data from tax returns, we find a positive correlation between the two errors and that households at the extremes of the income distribution mainly cause this association. Our results show that ME contributes more to the total error than unit nonresponse and that it would be larger in absence of the correlation between the two errors. Finally, efforts to reduce nonresponse rates are worthwhile only for nonrespondents in the lowest estimated response propensity group. If these households participate, the bias decreases because of the reduction in NR that offsets the increase in ME.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jssam/smad027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Household surveys on income might suffer from quality limitations mainly due to the difficulty of enrolling households (unit nonresponse) and retrieving correct information during the interview (measurement error [ME]). These errors are likely to be correlated because of latent factors, such as the threat of disclosing personal information, the perceived sensitivity of the topic, or social desirability. For survey organizations, assessing the interplay of these errors and their impact on the accuracy and precision of inferences derived from their data is crucial. In this article, we propose to use a standard sample selection model within a total survey error framework to deal with the case of correlated nonresponse error (NR) and ME in estimating average household income. We use it to study the correlation between the two errors, quantify the ME component due to this correlation, and evaluate ME among nonrespondents. Using the Italian Survey on Income and Wealth linked with administrative income data from tax returns, we find a positive correlation between the two errors and that households at the extremes of the income distribution mainly cause this association. Our results show that ME contributes more to the total error than unit nonresponse and that it would be larger in absence of the correlation between the two errors. Finally, efforts to reduce nonresponse rates are worthwhile only for nonrespondents in the lowest estimated response propensity group. If these households participate, the bias decreases because of the reduction in NR that offsets the increase in ME.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.