None Nurzaki Ikhsan, None A.A Saifizul, None R. Ramli
{"title":"Rollover Investigation of Two-Axle Heavy Vehicle Based on Load Transfer Ratio with Vehicle and Road Condition: A Simulation Approach","authors":"None Nurzaki Ikhsan, None A.A Saifizul, None R. Ramli","doi":"10.15282/ijame.20.3.2023.06.0820","DOIUrl":null,"url":null,"abstract":"Commercial heavy vehicle is commonly used to transport goods and people efficiently and safely. A previous study has shown a number of gross vehicle weight (GVW) and speed violations recorded in selected areas in Malaysia, and two-axle single unit truck (SUT) is the most commercial heavy vehicle type that violated the weight and speed regulation. Moreover, accidents involving heavy vehicles result in severe traffic disruption and fatalities to other road users due to heavy vehicle size and capability to carry huge amounts of goods. Thus, the objective of this paper is to investigate the correlation and effect of the vehicle and road condition on the two-axle SUT rollover during cornering on the curved road using the simulation approach. The verified two-axle SUT model is simulated using IPG-TruckMaker® with different GVW, speed, and coefficient of friction values while the cornering radius, driver behaviour and load’s center of gravity remain constant. A correlation based on performance indices is established, and it is found that the heavy vehicle speed has a strong correlation to the lateral load transfer to cause a rollover followed by GVW and coefficient of friction, respectively.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.3.2023.06.0820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial heavy vehicle is commonly used to transport goods and people efficiently and safely. A previous study has shown a number of gross vehicle weight (GVW) and speed violations recorded in selected areas in Malaysia, and two-axle single unit truck (SUT) is the most commercial heavy vehicle type that violated the weight and speed regulation. Moreover, accidents involving heavy vehicles result in severe traffic disruption and fatalities to other road users due to heavy vehicle size and capability to carry huge amounts of goods. Thus, the objective of this paper is to investigate the correlation and effect of the vehicle and road condition on the two-axle SUT rollover during cornering on the curved road using the simulation approach. The verified two-axle SUT model is simulated using IPG-TruckMaker® with different GVW, speed, and coefficient of friction values while the cornering radius, driver behaviour and load’s center of gravity remain constant. A correlation based on performance indices is established, and it is found that the heavy vehicle speed has a strong correlation to the lateral load transfer to cause a rollover followed by GVW and coefficient of friction, respectively.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.