Uniform Convexity in Variable Exponent Sobolev Spaces

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-10-27 DOI:10.3390/sym15111988
Mostafa Bachar, Mohamed A. Khamsi, Osvaldo Méndez
{"title":"Uniform Convexity in Variable Exponent Sobolev Spaces","authors":"Mostafa Bachar, Mohamed A. Khamsi, Osvaldo Méndez","doi":"10.3390/sym15111988","DOIUrl":null,"url":null,"abstract":"We prove the modular convexity of the mixed norm Lp(ℓ2) on the Sobolev space W1,p(Ω) in a domain Ω⊂Rn under the sole assumption that the exponent p(x) is bounded away from 1, i.e., we include the case supx∈Ωp(x)=∞. In particular, the mixed Sobolev norm is uniformly convex if 1<infx∈Ωp(x)≤supx∈Ωp(x)<∞ and W01,p(Ω) is uniformly convex.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"281 4","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111988","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the modular convexity of the mixed norm Lp(ℓ2) on the Sobolev space W1,p(Ω) in a domain Ω⊂Rn under the sole assumption that the exponent p(x) is bounded away from 1, i.e., we include the case supx∈Ωp(x)=∞. In particular, the mixed Sobolev norm is uniformly convex if 1
变指数Sobolev空间中的一致凸性
我们证明了在一个域Ω∧Rn中Sobolev空间W1,p(Ω)上混合范数Lp(l2)的模凸性,其唯一假设是指数p(x)离1有界,即我们包含supx∈Ωp(x)=∞的情况。特别地,当1<infx∈Ωp(x)≤supx∈Ωp(x)<∞且W01,p(Ω)为一致凸时,混合Sobolev范数为一致凸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信