A counterexample to \(L^{\infty }\)-gradient type estimates for Ornstein–Uhlenbeck operators

IF 1 3区 数学 Q1 MATHEMATICS
Emanuele Dolera, Enrico Priola
{"title":"A counterexample to \\(L^{\\infty }\\)-gradient type estimates for Ornstein–Uhlenbeck operators","authors":"Emanuele Dolera,&nbsp;Enrico Priola","doi":"10.1007/s10231-023-01389-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((\\lambda _k)\\)</span> be a strictly increasing sequence of positive numbers such that <span>\\({\\sum _{k=1}^{\\infty } \\frac{1}{\\lambda _k} &lt; \\infty }\\)</span>. Let <i>f</i> be a bounded smooth function and denote by <span>\\(u= u^f\\)</span> the bounded classical solution to </p><div><div><span>$$\\begin{aligned} u(x) - \\frac{1}{2}\\sum _{k=1}^m D^2_{kk} u(x) + \\sum _{k =1}^m \\lambda _k x_k D_k u(x) = f(x),\\quad x \\in {{\\mathbb {R}}}^m . \\end{aligned}$$</span></div></div><p>It is known that the following dimension-free estimate holds: </p><div><div><span>$$\\begin{aligned} \\displaystyle \\int _{{{\\mathbb {R}}}^m}\\! \\left[ \\sum _{k=1}^m \\lambda _k \\, (D_k u (y))^2 \\right] ^{p/2} \\!\\! \\!\\!\\!\\! \\mu _m (\\textrm{d}y) \\le (c_p)^p \\!\\! \\int _{{{\\mathbb {R}}}^m} \\!\\! |f( y)|^p \\mu _m (\\textrm{d}y),\\;\\;\\; 1&lt; p &lt; \\infty \\end{aligned}$$</span></div></div><p>where <span>\\(\\mu _m\\)</span> is the “diagonal” Gaussian measure determined by <span>\\(\\lambda _1, \\ldots , \\lambda _m\\)</span> and <span>\\(c_p &gt; 0\\)</span> is independent of <i>f</i> and <i>m</i>. This is a consequence of generalized Meyer’s inequalities [4]. We show that, if <span>\\(\\lambda _k \\sim k^2\\)</span>, then such estimate does not hold when <span>\\(p= \\infty \\)</span>. Indeed we prove </p><div><div><span>$$\\begin{aligned} \\sup _{\\begin{array}{c} f \\in C^{ 2}_b({{\\mathbb {R}}}^m),\\;\\;\\; \\Vert f\\Vert _{\\infty } \\le 1 \\end{array}} \\left\\{ \\sum _{k=1}^m \\lambda _k \\, (D_k u^f (0))^2 \\right\\} \\rightarrow \\infty \\;\\; \\text{ as } \\; m \\rightarrow \\infty . \\end{aligned}$$</span></div></div><p>This is in contrast to the case of <span>\\(\\lambda _k = \\lambda &gt;0\\)</span>, <span>\\(k \\ge 1\\)</span>, where a dimension-free bound holds for <span>\\(p =\\infty \\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 2","pages":"975 - 988"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01389-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01389-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((\lambda _k)\) be a strictly increasing sequence of positive numbers such that \({\sum _{k=1}^{\infty } \frac{1}{\lambda _k} < \infty }\). Let f be a bounded smooth function and denote by \(u= u^f\) the bounded classical solution to

$$\begin{aligned} u(x) - \frac{1}{2}\sum _{k=1}^m D^2_{kk} u(x) + \sum _{k =1}^m \lambda _k x_k D_k u(x) = f(x),\quad x \in {{\mathbb {R}}}^m . \end{aligned}$$

It is known that the following dimension-free estimate holds:

$$\begin{aligned} \displaystyle \int _{{{\mathbb {R}}}^m}\! \left[ \sum _{k=1}^m \lambda _k \, (D_k u (y))^2 \right] ^{p/2} \!\! \!\!\!\! \mu _m (\textrm{d}y) \le (c_p)^p \!\! \int _{{{\mathbb {R}}}^m} \!\! |f( y)|^p \mu _m (\textrm{d}y),\;\;\; 1< p < \infty \end{aligned}$$

where \(\mu _m\) is the “diagonal” Gaussian measure determined by \(\lambda _1, \ldots , \lambda _m\) and \(c_p > 0\) is independent of f and m. This is a consequence of generalized Meyer’s inequalities [4]. We show that, if \(\lambda _k \sim k^2\), then such estimate does not hold when \(p= \infty \). Indeed we prove

$$\begin{aligned} \sup _{\begin{array}{c} f \in C^{ 2}_b({{\mathbb {R}}}^m),\;\;\; \Vert f\Vert _{\infty } \le 1 \end{array}} \left\{ \sum _{k=1}^m \lambda _k \, (D_k u^f (0))^2 \right\} \rightarrow \infty \;\; \text{ as } \; m \rightarrow \infty . \end{aligned}$$

This is in contrast to the case of \(\lambda _k = \lambda >0\), \(k \ge 1\), where a dimension-free bound holds for \(p =\infty \).

Ornstein-Uhlenbeck 算子的(L^{\infty }\)梯度类型估计的反例
让 \((\lambda _k)\) 是一个严格递增的正数序列,使得 \({\sum _{k=1}^{\infty } \frac{1}\{lambda _k} < \infty\ }).让 f 是有界光滑函数,并用 \(u= u^f\) 表示 $$\begin{aligned} u(x) - \frac{1}{2}sum _{k=1}^m D^2_{kk} u(x) + \sum _{k =1}^m \lambda _k x_k D_k u(x) = f(x) 的有界经典解、\quad x in {{mathbb {R}}^m .\end{aligned}$$众所周知,以下无维度估计成立: $$\begin{aligned}\int _{{{\mathbb {R}}}^m}\!\left[ \sum _{k=1}^m \lambda _k \, (D_k u (y))^2 \right] ^{p/2} \!\!\!\!\!\mu _m (\textrm{d}y) \le (c_p)^p \!\(int)\!\!|f( y)|^p \mu _m (\textrm{d}y),\;\;\;1< p < \infty \end{aligned}$ 其中,\(\mu _m\)是由\(\lambda _1, \ldots , \lambda _m\)决定的 "对角 "高斯度量,并且\(c_p > 0\) 与f和m无关。这是广义梅耶不等式[4]的结果。我们证明,如果(lambda _k \sim k^2),那么当(p= \infty \)时,这种估计不成立。事实上,我们证明 $$\begin{aligned}\f \in C^{ 2}_b({{\mathbb {R}}^m),\;\;\;\Vert f\Vert _{\infty }\le 1 \end{array}}\left\{ \sum _{k=1}^m \lambda _k \, (D_k u^f (0))^2 \right\}\(infty); (text{ as }\end{aligned}$ 这与\(\lambda _k = \lambda>0\),\(k \ge 1\) 的情况相反,在这种情况下,无维度约束对\(p =\infty \)成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信