{"title":"Macroscopic supramolecular self-assembly detection based on HALCON machine vision","authors":"Yajun Zhang, Jiadong He, Fengsheng Huang, Yanbo Lu, Cheng Yu, Zhiming Jin","doi":"10.1007/s10847-023-01205-1","DOIUrl":null,"url":null,"abstract":"<div><p>Macroscopic supramolecular self-assembly (MSSA) has emerged as a new area of research in the field of supramolecular chemistry. The construction of macroscopic supramolecular structures using interfacial assembly by modifying functional groups on the surface of macromolecules and exploiting the weak interactions between surface functional groups is gaining more and more attention. With the advancement of gel technology, significant progress has been made in MSSA. However, MSSA still faces challenges such as low detection efficiency and accuracy. In this paper, a MSSA detection technique based on HALCON machine vision is designed. The technique first locates the hydrogel block (HB) by shape-based template matching and then uses machine vision techniques to detect whether the HBs are assembled. Finally, through the self-assembly judgment and detection of 500 groups of HBs, the results show that the technology can efficiently and accurately complete the MSSA detection function, which is of great significance for the development of supramolecular chemistry.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"103 11-12","pages":"407 - 419"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-023-01205-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Macroscopic supramolecular self-assembly (MSSA) has emerged as a new area of research in the field of supramolecular chemistry. The construction of macroscopic supramolecular structures using interfacial assembly by modifying functional groups on the surface of macromolecules and exploiting the weak interactions between surface functional groups is gaining more and more attention. With the advancement of gel technology, significant progress has been made in MSSA. However, MSSA still faces challenges such as low detection efficiency and accuracy. In this paper, a MSSA detection technique based on HALCON machine vision is designed. The technique first locates the hydrogel block (HB) by shape-based template matching and then uses machine vision techniques to detect whether the HBs are assembled. Finally, through the self-assembly judgment and detection of 500 groups of HBs, the results show that the technology can efficiently and accurately complete the MSSA detection function, which is of great significance for the development of supramolecular chemistry.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.