Friction Performance Analysis of Mine Wet Multi-Disc Brake

IF 0.6 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Chuanwei Zhang, Xiaohe Jin, Dawei Zhao, Jinpeng Liu
{"title":"Friction Performance Analysis of Mine Wet Multi-Disc Brake","authors":"Chuanwei Zhang, Xiaohe Jin, Dawei Zhao, Jinpeng Liu","doi":"10.4271/02-17-01-0001","DOIUrl":null,"url":null,"abstract":"<div>This article takes the wet multi-disc brake used in mining Isuzu 600P as the research object, establishes a simplified three-dimensional model of its key components through SOLIDWORKS and imports it into ANSYS Workbench to establish the flow field and structure field model of the wet brake. Based on the fluid–solid coupling, the finite element simulation of the temperature field and stress field of the friction pair of the wet brake under different braking pressures, braking initial speeds, and fluid viscosities was carried out, and then the position changes of the friction pairs at high temperature hot spots and high stress points were analyzed to determine the stability of its friction performance. Finally, by comparing the temperature change curves of the same point during the braking process under different braking conditions, the validity of the finite element analysis results is verified. The results show that the flow field pressure inside the wet brake is opposite to the flow field velocity, the initial braking velocity is the most influential factor on the friction performance of the friction pair, affected by the fluid, the maximum equivalent stress of the groove between the core plates is the same as the braking force. Pressure, braking initial speed, and fluid viscosity are proportional.</div>","PeriodicalId":45281,"journal":{"name":"SAE International Journal of Commercial Vehicles","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Commercial Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/02-17-01-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This article takes the wet multi-disc brake used in mining Isuzu 600P as the research object, establishes a simplified three-dimensional model of its key components through SOLIDWORKS and imports it into ANSYS Workbench to establish the flow field and structure field model of the wet brake. Based on the fluid–solid coupling, the finite element simulation of the temperature field and stress field of the friction pair of the wet brake under different braking pressures, braking initial speeds, and fluid viscosities was carried out, and then the position changes of the friction pairs at high temperature hot spots and high stress points were analyzed to determine the stability of its friction performance. Finally, by comparing the temperature change curves of the same point during the braking process under different braking conditions, the validity of the finite element analysis results is verified. The results show that the flow field pressure inside the wet brake is opposite to the flow field velocity, the initial braking velocity is the most influential factor on the friction performance of the friction pair, affected by the fluid, the maximum equivalent stress of the groove between the core plates is the same as the braking force. Pressure, braking initial speed, and fluid viscosity are proportional.
矿山湿式多盘制动器摩擦性能分析
本文以五铃600P矿用湿式多盘制动器为研究对象,通过SOLIDWORKS建立其关键部件的简化三维模型,并导入ANSYS Workbench中,建立湿式制动器的流场和结构场模型。基于流固耦合原理,对湿式制动器摩擦副在不同制动压力、制动初速度和流体粘度下的温度场和应力场进行了有限元仿真,分析了摩擦副在高温热点和高应力点处的位置变化,确定了湿式制动器摩擦性能的稳定性。最后,通过对比不同制动工况下制动过程中同一点的温度变化曲线,验证了有限元分析结果的有效性。结果表明:湿式制动器内部的流场压力与流场速度相反,初制动速度是影响摩擦副摩擦性能的最大因素,受流体的影响,芯片间凹槽的最大等效应力与制动力相同。压力、制动初速度和流体粘度成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SAE International Journal of Commercial Vehicles
SAE International Journal of Commercial Vehicles TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
1.80
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信