APPROXIMATION OF FUZZY NUMBERS BY FAVARD-SZASZMIRAKYAN OPERATORS OF MAX-PRODUCT

Sevilay KIRCI SERENBAY
{"title":"APPROXIMATION OF FUZZY NUMBERS BY FAVARD-SZASZMIRAKYAN OPERATORS OF MAX-PRODUCT","authors":"Sevilay KIRCI SERENBAY","doi":"10.59287/icpis.817","DOIUrl":null,"url":null,"abstract":"– In this study, the definition of the generalized Favard-Szasz-Mirakyan operators of max-productkind is extended to an arbitrary compact interval, by proving that their order of uniform approximation isthe same as in the particular case of the unit interval. We will show that if fuzzy numbers are presented inparametric form, the generalized Favard-Szasz-Mirakyan maximum product operator produces a set offuzzy numbers such that it is approximately the same as the uncertainty and value of the fuzzy number.
","PeriodicalId":292916,"journal":{"name":"International Conference on Pioneer and Innovative Studies","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pioneer and Innovative Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59287/icpis.817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

– In this study, the definition of the generalized Favard-Szasz-Mirakyan operators of max-productkind is extended to an arbitrary compact interval, by proving that their order of uniform approximation isthe same as in the particular case of the unit interval. We will show that if fuzzy numbers are presented inparametric form, the generalized Favard-Szasz-Mirakyan maximum product operator produces a set offuzzy numbers such that it is approximately the same as the uncertainty and value of the fuzzy number.
最大积的favard-szaszmirakyan算子逼近模糊数
通过证明其一致逼近阶与单位区间的特殊情况相同,将最大积类广义Favard-Szasz-Mirakyan算子的定义推广到任意紧区间。我们将证明,如果模糊数以非参数形式表示,广义Favard-Szasz-Mirakyan极大积算子产生的模糊数集合与模糊数的不确定性和值近似相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信