X-ray multi-scale microfabrication system and x-ray imaging evaluation system all in one beamline

Kanta Yamamoto, Yuichi Utsumi, Ikuya Sakurai, Ikuo Okada, Kenji Hanada, Hidehiro Ishizawa, Masahiro Takeo, Taki Watanabe, Sho Amano, Satoru Suzuki, Koji Sumitomo, Akinobu Yamaguchi
{"title":"X-ray multi-scale microfabrication system and x-ray imaging evaluation system all in one beamline","authors":"Kanta Yamamoto, Yuichi Utsumi, Ikuya Sakurai, Ikuo Okada, Kenji Hanada, Hidehiro Ishizawa, Masahiro Takeo, Taki Watanabe, Sho Amano, Satoru Suzuki, Koji Sumitomo, Akinobu Yamaguchi","doi":"10.1116/6.0003021","DOIUrl":null,"url":null,"abstract":"We have completed a system that can achieve both deep x-ray lithography and submicron x-ray lithography with a single beamline by introducing the combination of x-ray plane and cylindrical mirrors. This x-ray lithography system can provide a large-scale microfabrication processing with 210 × 300 mm2 (A4 size). To exploit multiscale lithography, the beamline has a beam transport vacuum duct with a two-stage stacked structure and a 5-axis stage. This two-stage stacked structure allows us to fabricate both micron scale structures with high aspect ratios and submicron scale structures using the same beamline. In addition, x-ray imaging and computer tomography (CT) system are connected to the x-ray lithography system for nondestructive inspection and evaluation of the fabricated microstructures. The x-ray imaging system constructed this study has a relatively low energy range of x-ray energy in the beamline, which is in the range of 2–15 keV or less. Therefore, relatively good absorption contrast can be obtained for plastic materials, biomaterials, and the like. Since nondestructive imaging of the processed shape by x-ray lithography is possible, it is a very useful system in processing and evaluation can be performed simultaneously. This system also enables us to obtain the live images with keeping the creature alive in liquid using an indirect x-ray imaging system which converts x-ray images to visible light images through the fluorescent plate.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have completed a system that can achieve both deep x-ray lithography and submicron x-ray lithography with a single beamline by introducing the combination of x-ray plane and cylindrical mirrors. This x-ray lithography system can provide a large-scale microfabrication processing with 210 × 300 mm2 (A4 size). To exploit multiscale lithography, the beamline has a beam transport vacuum duct with a two-stage stacked structure and a 5-axis stage. This two-stage stacked structure allows us to fabricate both micron scale structures with high aspect ratios and submicron scale structures using the same beamline. In addition, x-ray imaging and computer tomography (CT) system are connected to the x-ray lithography system for nondestructive inspection and evaluation of the fabricated microstructures. The x-ray imaging system constructed this study has a relatively low energy range of x-ray energy in the beamline, which is in the range of 2–15 keV or less. Therefore, relatively good absorption contrast can be obtained for plastic materials, biomaterials, and the like. Since nondestructive imaging of the processed shape by x-ray lithography is possible, it is a very useful system in processing and evaluation can be performed simultaneously. This system also enables us to obtain the live images with keeping the creature alive in liquid using an indirect x-ray imaging system which converts x-ray images to visible light images through the fluorescent plate.
x射线多尺度微加工系统和x射线成像评价系统均在同一光束线上
我们通过引入x射线平面镜和柱面镜的组合,完成了一个单光束线同时实现深x射线光刻和亚微米x射线光刻的系统。该x射线光刻系统可以提供210 × 300 mm2 (A4尺寸)的大规模微加工。为了实现多尺度光刻,光束线具有两级堆叠结构的光束传输真空管和五轴级。这种两级堆叠结构使我们能够使用相同的光束线制造具有高纵横比的微米级结构和亚微米级结构。此外,将x射线成像和计算机断层扫描(CT)系统连接到x射线光刻系统中,对所制备的微结构进行无损检测和评价。本研究构建的x射线成像系统在光束线上的x射线能量范围相对较低,在2-15 keV以下。因此,对于塑料材料、生物材料等可获得较好的吸收对比。由于利用x射线光刻技术对被加工形状进行无损成像是可能的,因此它是一种非常有用的系统,可以同时进行加工和评价。该系统还使我们能够通过荧光板将x射线图像转换为可见光图像的间接x射线成像系统,在保持生物在液体中存活的情况下获得实时图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信