V. Jagadeeswar, V. Dhinesh, S. Mohana Roopan, E. James Jabaseelan Samuel
{"title":"Plant Extract-Mediated Synthesis of Ag-Doped ZnO: Eco-Friendly Nanomaterial for Environmental Restoration, Microbial Inhibition, Cell Toxicity, Antioxidant Potential, and Sensing","authors":"V. Jagadeeswar, V. Dhinesh, S. Mohana Roopan, E. James Jabaseelan Samuel","doi":"10.1134/S1061933X23600513","DOIUrl":null,"url":null,"abstract":"<p>Green synthesis is a unique and eco-friendly method of producing nanoparticles that employs plant extracts as reducing and stabilizing agents. This approach offers numerous advantages, including low cost, biocompatibility, sustainability, and ease of operation. ZnO has been applied in various fields such as optical, electrical, magnetic, catalytic, and biological. Drawbacks such as high band gap of 3.37 eV, faster recombination of generated electron hole pair, lower antibacterial activity hinders ZnO nanoparticles utilization. Metal doping is a technique that modifies the nanoparticle’s characteristics by adding impurities into their lattice which improves optical, electrical, magnetic, catalytic, and biological properties of the host material. Silver doped zinc oxide (Ag/ZnO) is one of the promising materials for metal doped nanoparticles due to its enhanced antibacterial, anticancer, sensing, and photocatalytic capabilities. In this paper, we reviewed plant mediated green synthesis of Ag/ZnO nanoparticles and their multifunctional properties for biomedical and environmental application as well as proposed mechanisms of their action.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23600513","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Green synthesis is a unique and eco-friendly method of producing nanoparticles that employs plant extracts as reducing and stabilizing agents. This approach offers numerous advantages, including low cost, biocompatibility, sustainability, and ease of operation. ZnO has been applied in various fields such as optical, electrical, magnetic, catalytic, and biological. Drawbacks such as high band gap of 3.37 eV, faster recombination of generated electron hole pair, lower antibacterial activity hinders ZnO nanoparticles utilization. Metal doping is a technique that modifies the nanoparticle’s characteristics by adding impurities into their lattice which improves optical, electrical, magnetic, catalytic, and biological properties of the host material. Silver doped zinc oxide (Ag/ZnO) is one of the promising materials for metal doped nanoparticles due to its enhanced antibacterial, anticancer, sensing, and photocatalytic capabilities. In this paper, we reviewed plant mediated green synthesis of Ag/ZnO nanoparticles and their multifunctional properties for biomedical and environmental application as well as proposed mechanisms of their action.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.