{"title":"SRDF_QDAG: An efficient end-to-end RDF data management when graph exploration meets spatial processing","authors":"Houssameddine Yousfi, Amin Mesmoudi, Allel Hadjali, Houcine Matallah, Seif-Eddine Benkabou","doi":"10.2298/csis230225046y","DOIUrl":null,"url":null,"abstract":"The popularity of RDF has led to the creation of several datasets (e.g., Yago, DBPedia) with different natures (graph, temporal, spatial). Different extensions have also been proposed for SPARQL language to provide appropriate processing. The best known is GeoSparql, that allows the integration of a set of spatial operators. In this paper, we propose new strategies to support such operators within a particular TripleStore, named RDF QDAG, that relies on graph fragmentation and exploration and guarantees a good compromise between scalability and performance. Our proposal covers the different TripleStore components (Storage, evaluation, optimization). We evaluated our proposal using spatial queries with real RDF data, and we also compared performance with the latest version of a popular commercial TripleStore. The first results demonstrate the relevance of our proposal and how to achieve an average gain of performance of 28% by choosing the right evaluation strategies to use. Based on these results, we proposed to extend the RDF QDAG optimizer to dynamically select the evaluation strategy to use depending on the query. Then, we show also that our proposal yields the best strategy for most queries.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"23 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/csis230225046y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The popularity of RDF has led to the creation of several datasets (e.g., Yago, DBPedia) with different natures (graph, temporal, spatial). Different extensions have also been proposed for SPARQL language to provide appropriate processing. The best known is GeoSparql, that allows the integration of a set of spatial operators. In this paper, we propose new strategies to support such operators within a particular TripleStore, named RDF QDAG, that relies on graph fragmentation and exploration and guarantees a good compromise between scalability and performance. Our proposal covers the different TripleStore components (Storage, evaluation, optimization). We evaluated our proposal using spatial queries with real RDF data, and we also compared performance with the latest version of a popular commercial TripleStore. The first results demonstrate the relevance of our proposal and how to achieve an average gain of performance of 28% by choosing the right evaluation strategies to use. Based on these results, we proposed to extend the RDF QDAG optimizer to dynamically select the evaluation strategy to use depending on the query. Then, we show also that our proposal yields the best strategy for most queries.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.