{"title":"Low-Power Heterodyne Receiver Architectures: Review, Theory, and Examples","authors":"Aman Gupta;Trevor J. Odelberg;David D. Wentzloff","doi":"10.1109/OJSSCS.2023.3322671","DOIUrl":null,"url":null,"abstract":"The growth of the Internet of Things (IoT) has led to a massive upsurge in low-power radio research. Specifically, low-power receivers (RX) have been developed that efficiently receive data and extend the battery life for energy-constrained IoT systems. This has led to innovations in energy-detector (ED) first RXs which can achieve much lower power than traditional mixer-based heterodyne architectures. However, at such low-power levels, the RX performance is extremely limited. Oftentimes, low-power RXs have severe performance limitations, including lower data rate, limited blocker rejection, lower sensitivity, lower tolerance to PVT, limited modulation compatibility, and increased size and cost of off-chip components to achieve passive gain. This greatly limits the application of such RXs in real-world applications and prevents many of the low-power circuit techniques from translating to commercial standards. In this work, we look to motivate research into low-power heterodyne RX architectures which can support higher order modulation and have improved RX specifications while retaining low power.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"225-238"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10275080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10275080/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of the Internet of Things (IoT) has led to a massive upsurge in low-power radio research. Specifically, low-power receivers (RX) have been developed that efficiently receive data and extend the battery life for energy-constrained IoT systems. This has led to innovations in energy-detector (ED) first RXs which can achieve much lower power than traditional mixer-based heterodyne architectures. However, at such low-power levels, the RX performance is extremely limited. Oftentimes, low-power RXs have severe performance limitations, including lower data rate, limited blocker rejection, lower sensitivity, lower tolerance to PVT, limited modulation compatibility, and increased size and cost of off-chip components to achieve passive gain. This greatly limits the application of such RXs in real-world applications and prevents many of the low-power circuit techniques from translating to commercial standards. In this work, we look to motivate research into low-power heterodyne RX architectures which can support higher order modulation and have improved RX specifications while retaining low power.