Convergence Rates for the Truncated Euler-Maruyama Method for Nonlinear Stochastic Differential Equations

Q3 Multidisciplinary
Xuejing MENG, Linfeng LYU
{"title":"Convergence Rates for the Truncated Euler-Maruyama Method for Nonlinear Stochastic Differential Equations","authors":"Xuejing MENG, Linfeng LYU","doi":"10.1051/wujns/2023285399","DOIUrl":null,"url":null,"abstract":"In this paper, our main aim is to investigate the strong convergence rate of the truncated Euler-Maruyama approximations for stochastic differential equations with superlinearly growing drift coefficients. When the diffusion coefficient is polynomially growing or linearly growing, the strong convergence rate of arbitrarily close to one half is established at a single time T or over a time interval [0, T ], respectively. In both situations, the common one-sided Lipschitz and polynomial growth conditions for the drift coefficients are not required. Two examples are provided to illustrate the theory.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/wujns/2023285399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, our main aim is to investigate the strong convergence rate of the truncated Euler-Maruyama approximations for stochastic differential equations with superlinearly growing drift coefficients. When the diffusion coefficient is polynomially growing or linearly growing, the strong convergence rate of arbitrarily close to one half is established at a single time T or over a time interval [0, T ], respectively. In both situations, the common one-sided Lipschitz and polynomial growth conditions for the drift coefficients are not required. Two examples are provided to illustrate the theory.
非线性随机微分方程的截断Euler-Maruyama方法的收敛速率
本文的主要目的是研究具有超线性增长漂移系数的随机微分方程的截断Euler-Maruyama近似的强收敛速率。当扩散系数多项式增长或线性增长时,分别在单个时间T或时间区间[0,T]建立任意接近二分之一的强收敛速率。在这两种情况下,漂移系数不需要常见的单侧Lipschitz和多项式增长条件。给出了两个例子来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信