Boosting the catalytic performance of metal–zeolite catalysts in the hydrocracking of polyolefin wastes by optimizing the nanoscale proximity†

EES catalysis Pub Date : 2023-10-09 DOI:10.1039/D3EY00180F
Xinlei Han, Xinru Zhou, Tuo Ji, Feng Zeng, Weiping Deng, Zhenchen Tang and Rizhi Chen
{"title":"Boosting the catalytic performance of metal–zeolite catalysts in the hydrocracking of polyolefin wastes by optimizing the nanoscale proximity†","authors":"Xinlei Han, Xinru Zhou, Tuo Ji, Feng Zeng, Weiping Deng, Zhenchen Tang and Rizhi Chen","doi":"10.1039/D3EY00180F","DOIUrl":null,"url":null,"abstract":"<p >Hydrocracking polyolefins using bifunctional metal–zeolite catalysts is a pivotal strategy for the catalytic upcycling of plastic waste to produce value-added fuels. However, the macro-molecular size and stable C–C bond of polyolefins impose major challenges on catalyst design based on noble metal and microporous zeolites. The lack of investigation into the nanoscale proximity between Pt and USY has hindered the development of an evolving generation of catalysts. Herein, we report Pt/USY prepared by colloid-immobilization method with Pt nanoparticles exclusively located on the surface of USY is a superior catalyst (&gt;50% higher activity) compared to its analogues that have Pt inside or away from USY crystalline, reaching a selectivity to gasoline (C<small><sub>5–12</sub></small>) over 90%. The formation rate of liquid products reaches 6122 g<small><sub>liquid</sub></small> g<small><sub>Pt</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> and 5048 g<small><sub>liquid</sub></small> g<small><sub>Pt</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> in hydrocracking polyethylene (PE) and polypropylene (PP) at 280 °C, respectively. The hydrocracking of model alkanes with different molecular sizes demonstrates the nanoscale Pt-USY proximity as a key criterion in optimizing the accessibility and acidic environment of Pt, and the diffusion distance between metal and acid sites. These findings comprise a significant step forward toward rational catalyst design aiming at upcycling plastic waste for sustainable fuel production.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 300-310"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00180f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00180f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrocracking polyolefins using bifunctional metal–zeolite catalysts is a pivotal strategy for the catalytic upcycling of plastic waste to produce value-added fuels. However, the macro-molecular size and stable C–C bond of polyolefins impose major challenges on catalyst design based on noble metal and microporous zeolites. The lack of investigation into the nanoscale proximity between Pt and USY has hindered the development of an evolving generation of catalysts. Herein, we report Pt/USY prepared by colloid-immobilization method with Pt nanoparticles exclusively located on the surface of USY is a superior catalyst (>50% higher activity) compared to its analogues that have Pt inside or away from USY crystalline, reaching a selectivity to gasoline (C5–12) over 90%. The formation rate of liquid products reaches 6122 gliquid gPt−1 h−1 and 5048 gliquid gPt−1 h−1 in hydrocracking polyethylene (PE) and polypropylene (PP) at 280 °C, respectively. The hydrocracking of model alkanes with different molecular sizes demonstrates the nanoscale Pt-USY proximity as a key criterion in optimizing the accessibility and acidic environment of Pt, and the diffusion distance between metal and acid sites. These findings comprise a significant step forward toward rational catalyst design aiming at upcycling plastic waste for sustainable fuel production.

Abstract Image

Abstract Image

通过优化纳米级接近度† 提高金属沸石催化剂在聚烯烃废料加氢裂化中的催化性能
使用双功能金属沸石催化剂对聚烯烃进行加氢裂化是催化塑料废弃物升级再循环以生产增值燃料的关键策略。然而,聚烯烃的大分子尺寸和稳定的 C-C 键给基于贵金属和微孔沸石的催化剂设计带来了重大挑战。由于缺乏对铂和 USY 之间纳米级接近性的研究,阻碍了新一代催化剂的开发。在此,我们报告了通过胶体固定化方法制备的铂/USY,其铂纳米颗粒完全位于 USY 表面,与铂位于 USY 晶体内部或远离 USY 晶体的类似物相比,铂/USY 是一种优异的催化剂(活性高出 50%),对汽油(C5-12)的选择性超过 90%。在 280 °C 下加氢裂化聚乙烯(PE)和聚丙烯(PP)时,液态产物的形成率分别达到 6122 gliquid gPt-1 h-1 和 5048 gliquid gPt-1 h-1。不同分子大小的模型烷烃的加氢裂化证明,纳米级铂-USY接近性是优化铂的可及性和酸性环境以及金属与酸性位点之间扩散距离的关键标准。这些发现为合理设计催化剂迈出了重要一步,旨在将塑料废弃物升级再利用于可持续燃料生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信