Ahmed Bayoumi, Khader M. Hasan, Jorge Patino, Zafer Keser, Joseph A. Thomas, Refaat E. Gabr, Claudia Pedroza, Arash Kamali, Mya C. Schiess, Jerry S. Wolinsky, John A. Lincoln
{"title":"Identifying the white matter pathways involved in multiple sclerosis-related tremor using diffusion tensor imaging","authors":"Ahmed Bayoumi, Khader M. Hasan, Jorge Patino, Zafer Keser, Joseph A. Thomas, Refaat E. Gabr, Claudia Pedroza, Arash Kamali, Mya C. Schiess, Jerry S. Wolinsky, John A. Lincoln","doi":"10.1177/20552173231208271","DOIUrl":null,"url":null,"abstract":"Background Tremor affects up to 45% of patients with Multiple Sclerosis (PwMS). Current understanding is based on insights from other neurological disorders, thus, not fully addressing the distinctive aspects of MS pathology. Objective To characterize the brain white matter (WM) correlates of MS-related tremor using diffusion tensor imaging (DTI). Methods In a prospective case-control study, PwMS with tremor were assessed for tremor severity and underwent MRI scans including DTI. PwMS without tremor served as matched controls. After tract selection and segmentation, the resulting diffusivity measures were used to calculate group differences and correlations with tremor severity. Results This study included 72 PwMS. The tremor group (n = 36) exhibited significant changes in several pathways, notably in the right inferior longitudinal fasciculus (Cohen's d = 1.53, q < 0.001) and left corticospinal tract ( d = 1.32, q < 0.001), compared to controls (n = 36). Furthermore, specific tracts showed a significant correlation with tremor severity, notably in the left medial lemniscus (Spearman's coefficient [ r s p] = −0.56, p < 0.001), and forceps minor of corpus callosum ( r s p = -0.45, p < 0.01). Conclusion MS-related tremor is associated with widespread diffusivity changes in WM pathways and its severity correlates with commissural and sensory projection pathways, which suggests a role for proprioception or involvement of the dentato-rubro-olivary circuit.","PeriodicalId":18961,"journal":{"name":"Multiple Sclerosis Journal - Experimental, Translational and Clinical","volume":"136 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple Sclerosis Journal - Experimental, Translational and Clinical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20552173231208271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background Tremor affects up to 45% of patients with Multiple Sclerosis (PwMS). Current understanding is based on insights from other neurological disorders, thus, not fully addressing the distinctive aspects of MS pathology. Objective To characterize the brain white matter (WM) correlates of MS-related tremor using diffusion tensor imaging (DTI). Methods In a prospective case-control study, PwMS with tremor were assessed for tremor severity and underwent MRI scans including DTI. PwMS without tremor served as matched controls. After tract selection and segmentation, the resulting diffusivity measures were used to calculate group differences and correlations with tremor severity. Results This study included 72 PwMS. The tremor group (n = 36) exhibited significant changes in several pathways, notably in the right inferior longitudinal fasciculus (Cohen's d = 1.53, q < 0.001) and left corticospinal tract ( d = 1.32, q < 0.001), compared to controls (n = 36). Furthermore, specific tracts showed a significant correlation with tremor severity, notably in the left medial lemniscus (Spearman's coefficient [ r s p] = −0.56, p < 0.001), and forceps minor of corpus callosum ( r s p = -0.45, p < 0.01). Conclusion MS-related tremor is associated with widespread diffusivity changes in WM pathways and its severity correlates with commissural and sensory projection pathways, which suggests a role for proprioception or involvement of the dentato-rubro-olivary circuit.