{"title":"Fully extended $r$-spin TQFTs","authors":"Nils Carqueville, Lóránt Szegedy","doi":"10.4171/qt/193","DOIUrl":null,"url":null,"abstract":"We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: the 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $\\mathrm{Spin}\\_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$th power of their Serre automorphisms. For $r=1$, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $\\mathrm{Spin}\\_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"238 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/qt/193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: the 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $\mathrm{Spin}\_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$th power of their Serre automorphisms. For $r=1$, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $\mathrm{Spin}\_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.