{"title":"Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods","authors":"Cheng Li, Jinjin Zeng, Ding Guo, Lei Liu, Liwei Xiong*, Xiaogang Luo, Zhiyuan Hu, Fengshou Wu*","doi":"10.1021/acsami.1c13198","DOIUrl":null,"url":null,"abstract":"<p >In this work, we fabricated cobalt-doped carbon quantum dots (Co-CQDs) by a one-pot hydrothermal method with cobalt tetraphenylporphyrin and 1,2-ethanediamine as precursors. The morphology and structure of the Co-CQDs were characterized through transmission electron microscopy, X-ray diffraction spectra, Fourier transform infrared, and X-ray photoelectron spectra. The Co-CQDs emitted intense blue luminescence under ultraviolet irradiation and exhibited a typical excitation-dependent emission property. Moreover, they can act as a fluorescent probe for the detection of Fe<sup>3+</sup> and ascorbic acid (AA) with high selectivity and sensitivity through an “on–off–on” mode. The limit of detection (LOD) of Fe<sup>3+</sup> was measured as 38 μM (S/N = 3). The quenched emission of carbon quantum dots can be recovered with the addition of ascorbic acid (AA) to the Co-CQDs/Fe<sup>3+</sup> system. The change of fluorescence was linear with the concentration of AA (0.6–1.6 mM) with the LOD of 18 μM. Furthermore, the Co-CQDs exhibited high oxidase-like catalytic behavior, which could convert transparent 3,3′,5,5′-tetramethylbenzidine (TMB) into blue ox-TMB by dissolved oxygen. After adding ascorbic acid to the Co-CQDs/TMB system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on this phenomenon, the Co-CQDs were capable of detecting AA (10–400 μM) with the LOD of 0.27 μM. The fluorometric and colorimetric assays based on the Co-CQDs for the AA detection were then successfully applied in fresh fruits. Furthermore, the high biocompatibility of the Co-CQDs against HeLa cells was verified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Thus, the Co-CQDs could be used as a powerful tool for the detection of AA in real samples through a dual-mode method.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 41","pages":"49453–49461"},"PeriodicalIF":8.2000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.1c13198","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 43
Abstract
In this work, we fabricated cobalt-doped carbon quantum dots (Co-CQDs) by a one-pot hydrothermal method with cobalt tetraphenylporphyrin and 1,2-ethanediamine as precursors. The morphology and structure of the Co-CQDs were characterized through transmission electron microscopy, X-ray diffraction spectra, Fourier transform infrared, and X-ray photoelectron spectra. The Co-CQDs emitted intense blue luminescence under ultraviolet irradiation and exhibited a typical excitation-dependent emission property. Moreover, they can act as a fluorescent probe for the detection of Fe3+ and ascorbic acid (AA) with high selectivity and sensitivity through an “on–off–on” mode. The limit of detection (LOD) of Fe3+ was measured as 38 μM (S/N = 3). The quenched emission of carbon quantum dots can be recovered with the addition of ascorbic acid (AA) to the Co-CQDs/Fe3+ system. The change of fluorescence was linear with the concentration of AA (0.6–1.6 mM) with the LOD of 18 μM. Furthermore, the Co-CQDs exhibited high oxidase-like catalytic behavior, which could convert transparent 3,3′,5,5′-tetramethylbenzidine (TMB) into blue ox-TMB by dissolved oxygen. After adding ascorbic acid to the Co-CQDs/TMB system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on this phenomenon, the Co-CQDs were capable of detecting AA (10–400 μM) with the LOD of 0.27 μM. The fluorometric and colorimetric assays based on the Co-CQDs for the AA detection were then successfully applied in fresh fruits. Furthermore, the high biocompatibility of the Co-CQDs against HeLa cells was verified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Thus, the Co-CQDs could be used as a powerful tool for the detection of AA in real samples through a dual-mode method.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.