Graphdiyne as an Electron Modifier for Boosting Electrochemical Production of Adipic Acid

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fulai Liu, Xutao Gao, Rui Shi, Jinfan Xiong, Zhengxiao Guo, Edmund C. M. Tse, Yong Chen
{"title":"Graphdiyne as an Electron Modifier for Boosting Electrochemical Production of Adipic Acid","authors":"Fulai Liu,&nbsp;Xutao Gao,&nbsp;Rui Shi,&nbsp;Jinfan Xiong,&nbsp;Zhengxiao Guo,&nbsp;Edmund C. M. Tse,&nbsp;Yong Chen","doi":"10.1002/adfm.202310274","DOIUrl":null,"url":null,"abstract":"<p>Adipic acid (AA) is a crucial feedstock for nylon polymers, and is industrially produced by thermal oxidation of cyclohexanone/cyclohexanol mixture (KA oil). However, this process consumes large quantities of corrosive nitric acid as oxidants, while emits ozone-depleting greenhouse gas N<sub>2</sub>O. Here, an electrocatalytic strategy for selective oxidation of KA oil to AA coupled with H<sub>2</sub> evolution over a Co<sub>3</sub>O<sub>4</sub>/graphdiyne cooperative catalyst (Co<sub>3</sub>O<sub>4</sub>/GDY) is reported. The Co<sub>3</sub>O<sub>4</sub>/GDY displays high electrooxidation activity of KA oil to AA (100 mA cm<sup>−2</sup> at ≈1.5 V vs RHE), outperforming all the reported findings. Detailed ex situ and in situ experimental studies, theoretical calculations, and molecular dynamic simulations reveal that GDY not only facilitates the enrichment of cyclohexanone on the catalyst surface in aqueous medium, but also upshifts the <i>d</i>-band center of Co sites, strengthening the adsorption/activation of cyclohexanone. This study offers a green route for AA synthesis and proposes a GDY interface engineering strategy for efficient electrooxidation.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202310274","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Adipic acid (AA) is a crucial feedstock for nylon polymers, and is industrially produced by thermal oxidation of cyclohexanone/cyclohexanol mixture (KA oil). However, this process consumes large quantities of corrosive nitric acid as oxidants, while emits ozone-depleting greenhouse gas N2O. Here, an electrocatalytic strategy for selective oxidation of KA oil to AA coupled with H2 evolution over a Co3O4/graphdiyne cooperative catalyst (Co3O4/GDY) is reported. The Co3O4/GDY displays high electrooxidation activity of KA oil to AA (100 mA cm−2 at ≈1.5 V vs RHE), outperforming all the reported findings. Detailed ex situ and in situ experimental studies, theoretical calculations, and molecular dynamic simulations reveal that GDY not only facilitates the enrichment of cyclohexanone on the catalyst surface in aqueous medium, but also upshifts the d-band center of Co sites, strengthening the adsorption/activation of cyclohexanone. This study offers a green route for AA synthesis and proposes a GDY interface engineering strategy for efficient electrooxidation.

Abstract Image

Graphdiyne 作为电子修饰剂促进己二酸的电化学生产
己二酸(AA)是尼龙聚合物的重要原料,其工业化生产是通过对环己酮/环己醇混合物(KA 油)进行热氧化来实现的。然而,这一过程需要消耗大量具有腐蚀性的硝酸作为氧化剂,同时还会排放出破坏臭氧层的温室气体 N2O。本文报告了一种在 Co3O4/石墨二炔协同催化剂(Co3O4/GDY)上将 KA 油选择性氧化为 AA 并产生 H2 的电催化策略。Co3O4/GDY 将 KA 油电解氧化成 AA 的活性很高(100 mA cm-2,相对于 RHE ≈1.5 V),优于所有已报道的研究结果。详细的原位和原位实验研究、理论计算和分子动力学模拟表明,在水介质中,GDY 不仅能促进催化剂表面环己酮的富集,还能使 Co 位点的 d 带中心上移,从而增强对环己酮的吸附/活化。这项研究为 AA 的合成提供了一条绿色途径,并提出了一种实现高效电氧化的 GDY 界面工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信