Paula Ibáñez de Aldecoa, Sabine Tebbich, Andrea S Griffin
{"title":"Persistence associated with extractive foraging explains variation in innovation in Darwin’s finches","authors":"Paula Ibáñez de Aldecoa, Sabine Tebbich, Andrea S Griffin","doi":"10.1093/beheco/arad090","DOIUrl":null,"url":null,"abstract":"Abstract The capacity to create new behaviors is influenced by environmental factors such as foraging ecology, which can lead to phylogenetic variation in innovativeness. Alternatively, these differences may arise due to the selection of the underlying mechanisms, collaterally affecting innovativeness. To understand the evolutionary pathways that might enhance innovativeness, we examined the role of diet breadth and degree of extractive foraging, as well as a range of intervening cognitive and behavioral mechanisms (neophilia, neophobia, flexibility, motivation, and persistence). Darwin’s finches are very suitable to this purpose: the clade is composed of closely related species that vary in their feeding habits and capacity to develop food innovations. Using a multi-access box, we conducted an interspecies comparison on innovative problem-solving between two diet specialists, extractive foragers (woodpecker and cactus finch), and two diet generalists, non-extractive foragers (small and medium ground finch). We predicted that if extractive foraging was associated with high innovativeness, variation would be best explained by species differences in persistence and motivation, whereas if diet generalism was the main driver, then variation would be due to differences in flexibility and responses to novelty. We found a faster capacity to innovate and a higher persistence for extractive foragers, suggesting that persistence might be adaptive to extractive foraging and only secondarily to innovation. Our findings also show that diet generalism and some variables linking it to innovation were unrelated to innovativeness and call for the development of joint experimental approaches that capture the diversity of factors giving rise to novel behaviors.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"38 2","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/beheco/arad090","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The capacity to create new behaviors is influenced by environmental factors such as foraging ecology, which can lead to phylogenetic variation in innovativeness. Alternatively, these differences may arise due to the selection of the underlying mechanisms, collaterally affecting innovativeness. To understand the evolutionary pathways that might enhance innovativeness, we examined the role of diet breadth and degree of extractive foraging, as well as a range of intervening cognitive and behavioral mechanisms (neophilia, neophobia, flexibility, motivation, and persistence). Darwin’s finches are very suitable to this purpose: the clade is composed of closely related species that vary in their feeding habits and capacity to develop food innovations. Using a multi-access box, we conducted an interspecies comparison on innovative problem-solving between two diet specialists, extractive foragers (woodpecker and cactus finch), and two diet generalists, non-extractive foragers (small and medium ground finch). We predicted that if extractive foraging was associated with high innovativeness, variation would be best explained by species differences in persistence and motivation, whereas if diet generalism was the main driver, then variation would be due to differences in flexibility and responses to novelty. We found a faster capacity to innovate and a higher persistence for extractive foragers, suggesting that persistence might be adaptive to extractive foraging and only secondarily to innovation. Our findings also show that diet generalism and some variables linking it to innovation were unrelated to innovativeness and call for the development of joint experimental approaches that capture the diversity of factors giving rise to novel behaviors.
期刊介绍:
Studies on the whole range of behaving organisms, including plants, invertebrates, vertebrates, and humans, are included.
Behavioral Ecology construes the field in its broadest sense to include 1) the use of ecological and evolutionary processes to explain the occurrence and adaptive significance of behavior patterns; 2) the use of behavioral processes to predict ecological patterns, and 3) empirical, comparative analyses relating behavior to the environment in which it occurs.