{"title":"Numerical Optimisation of Excavation Pit Design Using Finite Element Analyses","authors":"Hauke Jürgens, Sascha Henke","doi":"10.1007/s10706-023-02639-7","DOIUrl":null,"url":null,"abstract":"Abstract The present study focusses on optimising a single supported excavation pit to achieve a more economical design using finite element analyses. Two methods for automating the derivation of the excavation pit’s necessary embedment depth are presented, which involve either embedment depth reduction using additional calculation phases or adapting the entire model with renewed discretisation. The bending moments as well as the earth pressure distribution along the wall show good agreement, indicating that both methods are suitable for application. Subsequently, the feasibility of using optimisation algorithms (Particle Swarm Optimisation and Differential Evolution) for dimensioning the single supported excavation pit regarding stress analysis of the wall is investigated. Therefore, the embedment depth and the position of the strut are varied for five different sheet pile walls and three different strut profiles. The results demonstrate that both algorithms perform well, particularly with a higher number of calculation steps. After varying iteration steps and population size, the Differential Evolution approach shows better performance compared to Particle Swarm Optimisation by means of finding the optimal solution after a lower number of computational steps.","PeriodicalId":48246,"journal":{"name":"Geotechnical and Geological Engineering","volume":"89 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnical and Geological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10706-023-02639-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The present study focusses on optimising a single supported excavation pit to achieve a more economical design using finite element analyses. Two methods for automating the derivation of the excavation pit’s necessary embedment depth are presented, which involve either embedment depth reduction using additional calculation phases or adapting the entire model with renewed discretisation. The bending moments as well as the earth pressure distribution along the wall show good agreement, indicating that both methods are suitable for application. Subsequently, the feasibility of using optimisation algorithms (Particle Swarm Optimisation and Differential Evolution) for dimensioning the single supported excavation pit regarding stress analysis of the wall is investigated. Therefore, the embedment depth and the position of the strut are varied for five different sheet pile walls and three different strut profiles. The results demonstrate that both algorithms perform well, particularly with a higher number of calculation steps. After varying iteration steps and population size, the Differential Evolution approach shows better performance compared to Particle Swarm Optimisation by means of finding the optimal solution after a lower number of computational steps.
期刊介绍:
Geotechnical and Geological Engineering publishes papers in the areas of soil and rock engineering and also of geology as applied in the civil engineering, mining and petroleum industries. The emphasis is on the engineering aspects of soil and rock mechanics, geology and hydrogeology, although papers on theoretical and experimental advances in ground mechanics are also welcomed for inclusion.
The journal encompasses a broad spectrum of geo-engineering although several areas have been identified which will be given particular priority:
Soil and rock engineering;
Foundation engineering;
Applied geology for design and construction;
Geo-environmental engineering;
Earthquake engineering and dynamic behavior of soils and rocks;
Geohazards and mitigation;
Mining engineering;
Geotechnical aspects of petroleum engineering;
Information technology applications in geo-engineering;
Novel geotechnical construction techniques;
Case histories describing important geo-engineering projects.
Geotechnical and Geological Engineering publishes contributions in the form of original and review papers, or as short technical notes.