Forrest F. Williams, Peter L. Moore, Jade V. Allen, Thomas Isenhart, John T. Thomas, John L. Kovar, Keith Schilling
{"title":"Sediment and phosphorus contributions from eroding banks in a large intensively managed watershed in western Iowa, United States","authors":"Forrest F. Williams, Peter L. Moore, Jade V. Allen, Thomas Isenhart, John T. Thomas, John L. Kovar, Keith Schilling","doi":"10.1111/1752-1688.13164","DOIUrl":null,"url":null,"abstract":"<p>In this study, a new remote sensing tool was used in conjunction with sampling of river bank sediments to map channel migration patterns and estimate the net contribution of bank erosion to the sediment and phosphorus (P) budget of the Nishnabotna River in southwestern Iowa. Between the years 2009 and 2018, we found that at least 1.81 ± 0.57 × 10<sup>7</sup> Mg of sediment and 8.26 ± 2.5 × 10<sup>3</sup> Mg of P entered the Nishnabotna River due to channel migration. This equates to 0.87 Mg of sediment per meter of channel per year and 0.40 kg of P per meter of channel per year. Barring additional deposition elsewhere in the river corridor, these values represent as much as 77% of annual suspended sediment and 46% of the annual P export from the watershed. Our results also indicate that the contribution of net sediment and P volume loss by stream order increases sharply from third to sixth order, even though the total channel length is much smaller in the higher orders. These results suggest that bank erosion is an important source of sediment and P within the watershed and that future attempts to decrease riparian exports of sediment and P should focus on high-order reaches.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 1","pages":"148-162"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13164","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a new remote sensing tool was used in conjunction with sampling of river bank sediments to map channel migration patterns and estimate the net contribution of bank erosion to the sediment and phosphorus (P) budget of the Nishnabotna River in southwestern Iowa. Between the years 2009 and 2018, we found that at least 1.81 ± 0.57 × 107 Mg of sediment and 8.26 ± 2.5 × 103 Mg of P entered the Nishnabotna River due to channel migration. This equates to 0.87 Mg of sediment per meter of channel per year and 0.40 kg of P per meter of channel per year. Barring additional deposition elsewhere in the river corridor, these values represent as much as 77% of annual suspended sediment and 46% of the annual P export from the watershed. Our results also indicate that the contribution of net sediment and P volume loss by stream order increases sharply from third to sixth order, even though the total channel length is much smaller in the higher orders. These results suggest that bank erosion is an important source of sediment and P within the watershed and that future attempts to decrease riparian exports of sediment and P should focus on high-order reaches.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.