{"title":"How Averaged is the Composition of Two Linear Projections?","authors":"Heinz H. Bauschke, Theo Bendit, Walaa M. Moursi","doi":"10.1080/01630563.2023.2270308","DOIUrl":null,"url":null,"abstract":"AbstractProjection operators are fundamental algorithmic operators in Analysis and Optimization. It is well known that these operators are firmly nonexpansive; however, their composition is generally only averaged and no longer firmly nonexpansive. In this note, we introduce the modulus of averagedness and provide an exact result for the composition of two linear projection operators. As a consequence, we deduce that the Ogura–Yamada bound for the modulus of the composition is sharp.KEYWORDS: Averaged mappingFriedrichs anglemodulus of averagednessnonexpansive mappingOgura–Yamada boundprojectionMATHEMATICS SUBJECT CLASSIFICATION: Primary: 47H09Secondary: 65K0590C25 AcknowledgmentsThe authors thank the reviewers and the editors for careful reading and constructive comments. We also thank Dr. Andrzej Cegielski for making us aware of his recent work [Citation3] which contains complementary results.Notes1 Usually, one excludes the cases κ = 0 and κ = 1 in the study of averaged operators, but it is very convenient in this paper to allow for this case.2 We assume for convenience throughout the paper that the operators have full domain which is the case in all algorithmic applications we are aware of. One could obviously generalize this notion to allow for operators whose domains are proper subsets of X.Additional informationFundingThe research of the authors was partially supported by Discovery Grants of the Natural Sciences and Engineering Research Council of Canada.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2270308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractProjection operators are fundamental algorithmic operators in Analysis and Optimization. It is well known that these operators are firmly nonexpansive; however, their composition is generally only averaged and no longer firmly nonexpansive. In this note, we introduce the modulus of averagedness and provide an exact result for the composition of two linear projection operators. As a consequence, we deduce that the Ogura–Yamada bound for the modulus of the composition is sharp.KEYWORDS: Averaged mappingFriedrichs anglemodulus of averagednessnonexpansive mappingOgura–Yamada boundprojectionMATHEMATICS SUBJECT CLASSIFICATION: Primary: 47H09Secondary: 65K0590C25 AcknowledgmentsThe authors thank the reviewers and the editors for careful reading and constructive comments. We also thank Dr. Andrzej Cegielski for making us aware of his recent work [Citation3] which contains complementary results.Notes1 Usually, one excludes the cases κ = 0 and κ = 1 in the study of averaged operators, but it is very convenient in this paper to allow for this case.2 We assume for convenience throughout the paper that the operators have full domain which is the case in all algorithmic applications we are aware of. One could obviously generalize this notion to allow for operators whose domains are proper subsets of X.Additional informationFundingThe research of the authors was partially supported by Discovery Grants of the Natural Sciences and Engineering Research Council of Canada.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.