Solution Blow Spinning to Prepare Preferred Oriented Poly(ethylene oxide) Submicrometric Fibers

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-09-21 DOI:10.3390/fib11090079
Javier González-Benito, Miguel A. Lorente, Dania Olmos, Ana Kramar
{"title":"Solution Blow Spinning to Prepare Preferred Oriented Poly(ethylene oxide) Submicrometric Fibers","authors":"Javier González-Benito, Miguel A. Lorente, Dania Olmos, Ana Kramar","doi":"10.3390/fib11090079","DOIUrl":null,"url":null,"abstract":"In this work, materials with potential biomedical applications constituted by fibrous poly(ethylene oxide), PEO, are prepared by solution blow spinning (SBS). The SBS setup has a cylindrical collector for which the rotational speed and size are varied to study its effect on the final morphology of the materials. The morphology is inspected using field emission scanning electron microscopy and studied using image analysis. As a result, many doubts were generated because of the use of different methods of image analysis, therefore a simpler and more conventional method using Image J open-source software was used to ensure the accuracy of the final interpretation. It is shown that fiber size and orientation depend on the linear speed associated with the surface of the collector more than on its rotational speed; therefore, it can be said that the morphology of materials prepared by SBS will depend on the size, shape, and rotational speed of the collector. When the linear speed of the cylindrical collector increases, fibers get thinner, less entangled, and more oriented. It is clear, therefore, that the linear speed of material collection by solution blow spinning is a very important parameter of processing to control the final morphology of materials manufactured by that method. Since morphology can affect the final properties of the materials the simple variation of the linear speed might have important implications on their final performance for different biomedical applications.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"76 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11090079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, materials with potential biomedical applications constituted by fibrous poly(ethylene oxide), PEO, are prepared by solution blow spinning (SBS). The SBS setup has a cylindrical collector for which the rotational speed and size are varied to study its effect on the final morphology of the materials. The morphology is inspected using field emission scanning electron microscopy and studied using image analysis. As a result, many doubts were generated because of the use of different methods of image analysis, therefore a simpler and more conventional method using Image J open-source software was used to ensure the accuracy of the final interpretation. It is shown that fiber size and orientation depend on the linear speed associated with the surface of the collector more than on its rotational speed; therefore, it can be said that the morphology of materials prepared by SBS will depend on the size, shape, and rotational speed of the collector. When the linear speed of the cylindrical collector increases, fibers get thinner, less entangled, and more oriented. It is clear, therefore, that the linear speed of material collection by solution blow spinning is a very important parameter of processing to control the final morphology of materials manufactured by that method. Since morphology can affect the final properties of the materials the simple variation of the linear speed might have important implications on their final performance for different biomedical applications.
溶液吹丝制优定向聚环氧乙烷亚微米纤维
本文采用溶液吹丝(SBS)法制备了具有潜在生物医学应用价值的纤维性聚环氧乙烷(PEO)材料。SBS装置有一个圆柱形收集器,其转速和大小是不同的,以研究其对材料的最终形态的影响。用场发射扫描电子显微镜观察其形貌,并用图像分析研究其形貌。因此,由于使用了不同的图像分析方法,产生了许多疑问,因此采用了更简单,更常规的方法,使用image J开源软件,以确保最终解译的准确性。结果表明,光纤的尺寸和方向对集热器表面线速度的影响大于对集热器表面转速的影响;因此,可以说SBS制备的材料的形貌将取决于捕集剂的尺寸、形状和转速。当圆柱形集热器的线速度增加时,纤维变得更细,缠结更少,定向更强。因此,很明显,溶液吹丝收集材料的线速度是控制该方法制造的材料最终形貌的一个非常重要的加工参数。由于形态可以影响材料的最终性能,线速度的简单变化可能对其在不同生物医学应用中的最终性能具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信