Unveiling an S-scheme F–Co3O4@Bi2WO6 heterojunction for robust water purification

IF 42.9 Q1 ELECTROCHEMISTRY
Linhan Jian , Guowen Wang , Xinghui Liu , Hongchao Ma
{"title":"Unveiling an S-scheme F–Co3O4@Bi2WO6 heterojunction for robust water purification","authors":"Linhan Jian ,&nbsp;Guowen Wang ,&nbsp;Xinghui Liu ,&nbsp;Hongchao Ma","doi":"10.1016/j.esci.2023.100206","DOIUrl":null,"url":null,"abstract":"<div><p>Devising a desirable nano-heterostructured photoelectrode based on the charge transfer kinetics mechanism is a pivotal strategy for implementing efficient photoelectrocatalytic (PEC) technology, since the charge separation and utilization efficiency of a photoelectrode is critical to its PEC performance. Herein, we fabricate a F–Co<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>WO<sub>6</sub> core–shell hetero-array photoanode by coupling Bi<sub>2</sub>WO<sub>6</sub> nanosheets with F–Co<sub>3</sub>O<sub>4</sub> nanowires using a simple solvothermal solution method. The three-dimensional hierarchical heterostructure has a homogeneous chemical interface, helping it to promote an S-scheme-based carrier transport kinetics and maintain excellent cycling stability. Charge density difference calculations verify the electron migration trend from F–Co<sub>3</sub>O<sub>4</sub> to Bi<sub>2</sub>WO<sub>6</sub> upon hybridization and the formation of an internal electric field in the heterojunction, consistent with the S-scheme mechanism, which is identified by in situ irradiation X-ray photoelectron spectroscopy and by ultraviolet photoelectron spectroscopy. The optimized F–Co<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>WO<sub>6</sub>-2 photoelectrode achieves high carrier utilization efficiency and exhibits superior PEC degradation performance for various organic pollutants, including reactive brilliant blue KN-R, rhodamine B, sulfamethoxazole, and bisphenol A. This work not only reveals that F–Co<sub>3</sub>O<sub>4</sub>@Bi<sub>2</sub>WO<sub>6</sub>-2 is effective for PEC water remediation but also provides a strategy to enhance carrier transport kinetics by designing binary oxides.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100206"},"PeriodicalIF":42.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001520/pdfft?md5=5edc38cb040ce44a677a54b38d3004ba&pid=1-s2.0-S2667141723001520-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Devising a desirable nano-heterostructured photoelectrode based on the charge transfer kinetics mechanism is a pivotal strategy for implementing efficient photoelectrocatalytic (PEC) technology, since the charge separation and utilization efficiency of a photoelectrode is critical to its PEC performance. Herein, we fabricate a F–Co3O4@Bi2WO6 core–shell hetero-array photoanode by coupling Bi2WO6 nanosheets with F–Co3O4 nanowires using a simple solvothermal solution method. The three-dimensional hierarchical heterostructure has a homogeneous chemical interface, helping it to promote an S-scheme-based carrier transport kinetics and maintain excellent cycling stability. Charge density difference calculations verify the electron migration trend from F–Co3O4 to Bi2WO6 upon hybridization and the formation of an internal electric field in the heterojunction, consistent with the S-scheme mechanism, which is identified by in situ irradiation X-ray photoelectron spectroscopy and by ultraviolet photoelectron spectroscopy. The optimized F–Co3O4@Bi2WO6-2 photoelectrode achieves high carrier utilization efficiency and exhibits superior PEC degradation performance for various organic pollutants, including reactive brilliant blue KN-R, rhodamine B, sulfamethoxazole, and bisphenol A. This work not only reveals that F–Co3O4@Bi2WO6-2 is effective for PEC water remediation but also provides a strategy to enhance carrier transport kinetics by designing binary oxides.

Abstract Image

Abstract Image

揭秘用于强效水净化的 S 型 F-Co3O4@Bi2WO6 异质结
基于电荷转移动力学机制设计理想的纳米异质结构光电极是实现高效光电催化(PEC)技术的关键策略,因为光电极的电荷分离和利用效率对其 PEC 性能至关重要。在此,我们采用简单的溶解热溶液法,将 Bi2WO6 纳米片与 F-Co3O4 纳米线耦合,制备出 F-Co3O4@Bi2WO6 核壳异质阵列光阳极。这种三维分层异质结构具有均匀的化学界面,有助于促进基于 S 方案的载流子传输动力学,并保持优异的循环稳定性。电荷密度差计算验证了杂化后电子从 F-Co3O4 向 Bi2WO6 迁移的趋势,以及异质结中内部电场的形成,这与原位辐照 X 射线光电子能谱和紫外光电子能谱确定的 S 型机制一致。优化后的 F-Co3O4@Bi2WO6-2 光电极实现了高载流子利用效率,对多种有机污染物(包括活性艳蓝 KN-R、罗丹明 B、磺胺甲噁唑和双酚 A)具有优异的 PEC 降解性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信