Songjun Guo , Xu Wei , Hongjiao Li , Wen Qin , Yijun Mu , Jiongli Huang , Chuan Nong , Junchao Yang , Dabiao Zhang , Hua Lin , Jingying Mao , Zhaoyu Mo
{"title":"Pollution characteristics of peroxyacetyl nitrate in karst areas in Southwest China","authors":"Songjun Guo , Xu Wei , Hongjiao Li , Wen Qin , Yijun Mu , Jiongli Huang , Chuan Nong , Junchao Yang , Dabiao Zhang , Hua Lin , Jingying Mao , Zhaoyu Mo","doi":"10.1016/j.aosl.2023.100442","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the issue of photochemical pollution in the Guangxi region of China has escalated considerably. However, there remains a notable dearth of related research in this area. Peroxyacetyl nitrate (PAN), recognized as a reliable indicator of photochemical pollution, was the focus of our study. This study marks the inaugural observation of PAN levels in Guilin, a renowned world tourist destination situated in a typical karst region, during 1–31 October 2021. Throughout this observation period, the average volume concentration of PAN ranged from 0.087 to 2.559 ppb, which was 3.61 times higher than the South China background site of the Nanling. Combined with meteorological factors and potential source analysis, the causes of a typical high-value PAN process were explored during 24–29 October. The results showed that, during this high-value PAN event, pollution primarily originated from the horizontal transport of polluted air masses and the descent of high-altitude air masses from Hunan Province in the northeast direction. Additionally, the meteorological conditions, including high temperatures, intense radiation, and low humidity, fostered local PAN formation. Notably, traffic emissions emerged as the primary source of PAN's locally generated precursor volatile organic compounds. Furthermore, we estimated the background concentration of O<sub>3</sub> to be approximately 20.347 ppb based on PAN monitoring data, constituting 44.4% of the total O<sub>3</sub> levels in Guilin City. This study offers valuable insights for addressing and mitigating photochemical pollution in southern Chinese cities, while providing a theoretical foundation for regional pollution control efforts.</p><p>摘要</p><p>桂林是世界著名的地处喀斯特地区的旅游胜地, 其光化学污染问题日益严重.过氧乙酰硝酸酯(PAN)被认为是光化学污染的可靠指标, 也是本研究的重点. 本研究于2021年10月首次观测了桂林的PAN的浓度为0.087–2.559 ppb, 同时探讨了PAN典型高值过程的成因. 此次污染主要来源于东北方向污染气团的水平和高空输送, 同时, 高温, 强辐射和低湿度等气象条件也促进了本地PAN的形成. 本研究同时估算了桂林市的O<sub>3</sub>背景浓度为20.347 ppb.这项研究为城市的光化学污染控制工作提供了理论基础.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 2","pages":"Article 100442"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283423001411/pdfft?md5=62b9396a1cd2fa6d8a16c0410de43d8b&pid=1-s2.0-S1674283423001411-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423001411","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the issue of photochemical pollution in the Guangxi region of China has escalated considerably. However, there remains a notable dearth of related research in this area. Peroxyacetyl nitrate (PAN), recognized as a reliable indicator of photochemical pollution, was the focus of our study. This study marks the inaugural observation of PAN levels in Guilin, a renowned world tourist destination situated in a typical karst region, during 1–31 October 2021. Throughout this observation period, the average volume concentration of PAN ranged from 0.087 to 2.559 ppb, which was 3.61 times higher than the South China background site of the Nanling. Combined with meteorological factors and potential source analysis, the causes of a typical high-value PAN process were explored during 24–29 October. The results showed that, during this high-value PAN event, pollution primarily originated from the horizontal transport of polluted air masses and the descent of high-altitude air masses from Hunan Province in the northeast direction. Additionally, the meteorological conditions, including high temperatures, intense radiation, and low humidity, fostered local PAN formation. Notably, traffic emissions emerged as the primary source of PAN's locally generated precursor volatile organic compounds. Furthermore, we estimated the background concentration of O3 to be approximately 20.347 ppb based on PAN monitoring data, constituting 44.4% of the total O3 levels in Guilin City. This study offers valuable insights for addressing and mitigating photochemical pollution in southern Chinese cities, while providing a theoretical foundation for regional pollution control efforts.