Practical Applications of Harvesting Multi-Asset Carry, Value, and Momentum: Work Smarter, Not Harder

Brian Jacobsen, Matthias Scheiber
{"title":"Practical Applications of Harvesting Multi-Asset Carry, Value, and Momentum: Work Smarter, Not Harder","authors":"Brian Jacobsen, Matthias Scheiber","doi":"10.3905/pa.2023.pa531","DOIUrl":null,"url":null,"abstract":"In <ext-link><bold><italic>Harvesting Multi-Asset Carry, Value, and Momentum: Work Smarter, Not Harder</italic></bold></ext-link>, from the Spring 2022 issue of <bold><italic>The Journal of Financial Data Science</italic></bold>, authors <bold>Brian Jacobsen</bold> and <bold>Matthias Scheiber</bold> (both of <bold>Allspring Global Investments</bold>) investigate the effectiveness of different systematic investing strategies. The traditional approach treats carry, value, and momentum as trading signals that dictate when to establish a position. The study finds that these signals strengthen or decay, depending on how long the investor waits to make the initial trade or holds the assets thereafter. Investment returns vary widely and are marginally negative, on average. The study then tests out a different approach that uses carry, value, and momentum not as triggers for trades but as explanatory variables in a machine learning–based decision-tree model that determines which assets are sending the strongest signals. This approach produces marginally positive returns when it compares each asset’s signals to the median of its asset class, and it produces significantly positive returns when it compares each asset’s signals to the median for all asset classes. Returns improve even more when the investor frequently monitors trades and signals and closes out positions when signals decay.","PeriodicalId":500434,"journal":{"name":"Practical applications of institutional investor journals","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical applications of institutional investor journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/pa.2023.pa531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Harvesting Multi-Asset Carry, Value, and Momentum: Work Smarter, Not Harder, from the Spring 2022 issue of The Journal of Financial Data Science, authors Brian Jacobsen and Matthias Scheiber (both of Allspring Global Investments) investigate the effectiveness of different systematic investing strategies. The traditional approach treats carry, value, and momentum as trading signals that dictate when to establish a position. The study finds that these signals strengthen or decay, depending on how long the investor waits to make the initial trade or holds the assets thereafter. Investment returns vary widely and are marginally negative, on average. The study then tests out a different approach that uses carry, value, and momentum not as triggers for trades but as explanatory variables in a machine learning–based decision-tree model that determines which assets are sending the strongest signals. This approach produces marginally positive returns when it compares each asset’s signals to the median of its asset class, and it produces significantly positive returns when it compares each asset’s signals to the median for all asset classes. Returns improve even more when the investor frequently monitors trades and signals and closes out positions when signals decay.
收获多资产利差、价值和动力的实际应用:更聪明地工作,而不是更努力地工作
《金融数据科学杂志》(the Journal of Financial Data Science) 2022年春季刊的《收获多资产利差、价值和动力:更聪明而不是更努力地工作》一文中,作者布莱恩·雅各布森(Brian Jacobsen)和马蒂亚斯·谢伯(Matthias Scheiber)(两人都来自Allspring Global Investments)调查了不同系统投资策略的有效性。传统的方法将套利、价值和动量视为决定何时建立头寸的交易信号。研究发现,这些信号是增强还是减弱,取决于投资者等待进行初始交易或随后持有资产的时间。投资回报差异很大,平均来说是微负的。然后,该研究测试了一种不同的方法,该方法将套利、价值和动量不作为交易的触发因素,而是作为基于机器学习的决策树模型中的解释变量,该模型确定哪些资产发出了最强的信号。当将每种资产的信号与其资产类别的中位数进行比较时,这种方法产生了轻微的正回报,当将每种资产的信号与所有资产类别的中位数进行比较时,它产生了显著的正回报。如果投资者经常监控交易和信号,并在信号减弱时平仓,回报率会提高得更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信