Claudia Marcela Ibanez, S. Nami Kartal, Ekim Elçin Soytürk, Fatih Kurul, Sedanur Şeker, M. Serdar Önses, Nusret Çelik, Adem Berke Temiz
{"title":"Changes in the physical and mechanical properties of Pinus taeda and Eucalyptus bosistoana wood modified by contact charring","authors":"Claudia Marcela Ibanez, S. Nami Kartal, Ekim Elçin Soytürk, Fatih Kurul, Sedanur Şeker, M. Serdar Önses, Nusret Çelik, Adem Berke Temiz","doi":"10.15376/biores.18.4.8614-8630","DOIUrl":null,"url":null,"abstract":"Physical and mechanical properties were evaluated for all-sided charred Pinus taeda and Eucalyptus bosistoana wood by hot plate contact heating system followed by treatment with linseed oil. The water absorption, volumetric swelling, wettability, hardness, modulus of rupture, and modulus of elasticity in bending strength and compression strength parallel to grain were determined. The water absorption and volumetric swell were determined after immersion in water, as measured at various intervals of water immersion up to 120 h. The results suggested that the contact charring process with the addition of a linseed oil application improved water absorption and volumetric swell properties of charred specimens compared to un-charred controls. Hardness of the charred wood decreased by 38% and 43% in P. taeda and E. bosistoana specimens, respectively, compared with their respective controls. The highest reductions were seen in modulus of elasticity and compression strength values in charred P. taeda specimens, while modulus of rupture (MOR) values decreased more in charred E. bosistoana specimens than in charred P. taeda specimens. These results suggested that charring of P. taeda and E. bosistoana wood does improve the moisture-related characteristics; however, their mechanical behavior and hardness decreased.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"94 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.18.4.8614-8630","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Physical and mechanical properties were evaluated for all-sided charred Pinus taeda and Eucalyptus bosistoana wood by hot plate contact heating system followed by treatment with linseed oil. The water absorption, volumetric swelling, wettability, hardness, modulus of rupture, and modulus of elasticity in bending strength and compression strength parallel to grain were determined. The water absorption and volumetric swell were determined after immersion in water, as measured at various intervals of water immersion up to 120 h. The results suggested that the contact charring process with the addition of a linseed oil application improved water absorption and volumetric swell properties of charred specimens compared to un-charred controls. Hardness of the charred wood decreased by 38% and 43% in P. taeda and E. bosistoana specimens, respectively, compared with their respective controls. The highest reductions were seen in modulus of elasticity and compression strength values in charred P. taeda specimens, while modulus of rupture (MOR) values decreased more in charred E. bosistoana specimens than in charred P. taeda specimens. These results suggested that charring of P. taeda and E. bosistoana wood does improve the moisture-related characteristics; however, their mechanical behavior and hardness decreased.
期刊介绍:
The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.