{"title":"Empirical measures and random walks on compact spaces in the quadratic Wasserstein metric","authors":"Bence Borda","doi":"10.1214/22-aihp1322","DOIUrl":null,"url":null,"abstract":"Estimer la vitesse de convergence de la mesure empirique d’un échantillon i.i.d. vers la mesure de référence est un problème classique en théorie des probabilités. Dans cet article, nous étendons des résultats récents d’Ambrosio, Stra et Trevisan sur les variétés riemanniennnes de dimension 2, et prouvons des bornes supérieures optimales, à la fois asymptotiques et non-asymptotiques, pour la vitesse moyenne selon la distance de Wasserstein quadratique W2 sur une variété riemannienne compacte de dimension d. En supposant que la mesure de référence est suffisamment lisse, nos bornes coïncident avec la vitesse de convergence classique pour le problème d’appariement optimal sur le cube unité, dû à Ajtai, Komlós, Tusnády et Talagrand. Nous remplaçons l’hypothèse i.i.d. par celle plus faible d’échantillons stationnaires satisfaisant une condition de mélange. Comme exemple d’échantillon non-stationnaire, nous considérons aussi la mesure empirique d’une marche aléatoire sur un groupe de Lie compact. Étonnamment, pour les groupes semi-simples, les marches aléatoires atteignent des vitesses de convergence presque optimales, même sans hypothèse de trou spectral. Les preuves sont basées sur de l’analyse de Fourier, et en particulier sur une inégalité de lissage de Berry–Esseen pour W2 sur des variétés riemanniennes compactes, un résultat qui est intéressant en lui-même et possède un grand nombre d’applications.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"33 2","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1322","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
Estimer la vitesse de convergence de la mesure empirique d’un échantillon i.i.d. vers la mesure de référence est un problème classique en théorie des probabilités. Dans cet article, nous étendons des résultats récents d’Ambrosio, Stra et Trevisan sur les variétés riemanniennnes de dimension 2, et prouvons des bornes supérieures optimales, à la fois asymptotiques et non-asymptotiques, pour la vitesse moyenne selon la distance de Wasserstein quadratique W2 sur une variété riemannienne compacte de dimension d. En supposant que la mesure de référence est suffisamment lisse, nos bornes coïncident avec la vitesse de convergence classique pour le problème d’appariement optimal sur le cube unité, dû à Ajtai, Komlós, Tusnády et Talagrand. Nous remplaçons l’hypothèse i.i.d. par celle plus faible d’échantillons stationnaires satisfaisant une condition de mélange. Comme exemple d’échantillon non-stationnaire, nous considérons aussi la mesure empirique d’une marche aléatoire sur un groupe de Lie compact. Étonnamment, pour les groupes semi-simples, les marches aléatoires atteignent des vitesses de convergence presque optimales, même sans hypothèse de trou spectral. Les preuves sont basées sur de l’analyse de Fourier, et en particulier sur une inégalité de lissage de Berry–Esseen pour W2 sur des variétés riemanniennes compactes, un résultat qui est intéressant en lui-même et possède un grand nombre d’applications.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.