Weyl's law for singular Riemannian manifolds

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Y. Chitour , D. Prandi , L. Rizzi
{"title":"Weyl's law for singular Riemannian manifolds","authors":"Y. Chitour ,&nbsp;D. Prandi ,&nbsp;L. Rizzi","doi":"10.1016/j.matpur.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We study the asymptotic growth of the eigenvalues of the Laplace-Beltrami operator on singular Riemannian manifolds, where all geometrical invariants appearing in classical spectral asymptotics are unbounded, and the total volume can be infinite. Under suitable assumptions on the curvature blow-up, we show how the singularity influences the Weyl's asymptotics. Our main motivation comes from the construction of singular Riemannian metrics with prescribed non-classical Weyl's law. Namely, for any non-decreasing </span>slowly varying function </span><em>υ</em> we construct a singular Riemannian structure whose spectrum is discrete and satisfies<span><span><span><math><mi>N</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msup><mrow><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><msup><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>υ</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>.</mo></math></span></span></span> Examples of slowly varying functions are <span><math><mi>log</mi><mo>⁡</mo><mi>λ</mi></math></span>, its iterations <span><math><msub><mrow><mi>log</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>λ</mi><mo>=</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>λ</mi></math></span><span>, any rational function with positive coefficients of </span><span><math><msub><mrow><mi>log</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>λ</mi></math></span>, and functions with non-logarithmic growth such as <span><math><mi>exp</mi><mo>⁡</mo><mrow><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>λ</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>…</mo><msup><mrow><mo>(</mo><msub><mrow><mi>log</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><mi>λ</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow></math></span> for <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. A key tool in our arguments is a new quantitative estimate for the remainder of the heat trace and the Weyl's function on Riemannian manifolds, which is of independent interest.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

We study the asymptotic growth of the eigenvalues of the Laplace-Beltrami operator on singular Riemannian manifolds, where all geometrical invariants appearing in classical spectral asymptotics are unbounded, and the total volume can be infinite. Under suitable assumptions on the curvature blow-up, we show how the singularity influences the Weyl's asymptotics. Our main motivation comes from the construction of singular Riemannian metrics with prescribed non-classical Weyl's law. Namely, for any non-decreasing slowly varying function υ we construct a singular Riemannian structure whose spectrum is discrete and satisfiesN(λ)ωn(2π)nλn/2υ(λ). Examples of slowly varying functions are logλ, its iterations logkλ=logk1logλ, any rational function with positive coefficients of logkλ, and functions with non-logarithmic growth such as exp((logλ)α1(logkλ)αk) for αi(0,1). A key tool in our arguments is a new quantitative estimate for the remainder of the heat trace and the Weyl's function on Riemannian manifolds, which is of independent interest.

奇异黎曼流形的Weyl定律
研究了奇异黎曼流形上拉普拉斯-贝尔特拉米算子特征值的渐近增长,其中经典谱渐近中出现的所有几何不变量都是无界的,并且总体积可以是无限的。在曲率膨胀的适当假设下,我们证明了奇异点如何影响Weyl渐近。我们的主要动机来自于用规定的非经典魏尔定律构造奇异黎曼度量。也就是说,对于任何非递减的慢变函数υ,我们构造了一个奇异黎曼结构,其谱是离散的,并且满足esn (λ) ~ ωn(2π)nλn/2υ(λ)。慢变函数的例子有log λ,它的迭代logk λ=logk−1 log λ,任何logk λ系数为正的有理函数,以及对于αi∈(0,1)具有非对数增长的函数,如exp ((log λ)α1…(logk λ)αk)。我们讨论的一个关键工具是对热迹和黎曼流形上的Weyl函数的剩余部分的新的定量估计,这是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信