Jonah T. Hansen, Samuel Wade, Michael J. Ireland, Tony D. Travouillon, Tiphaine Lagadec, Nicholas Herrald, Joice Mathew, Stephanie Monty, Adam D. Rains
{"title":"Pyxis: a ground-based demonstrator for formation-flying optical interferometry","authors":"Jonah T. Hansen, Samuel Wade, Michael J. Ireland, Tony D. Travouillon, Tiphaine Lagadec, Nicholas Herrald, Joice Mathew, Stephanie Monty, Adam D. Rains","doi":"10.1117/1.jatis.9.4.045001","DOIUrl":null,"url":null,"abstract":"In the past few years, there has been a resurgence in studies of space-based optical/infrared interferometry, particularly with the vision to use the technique to discover and characterize temperate Earth-like exoplanets around solar analogs. One of the key technological leaps needed to make such a mission feasible is demonstrating that formation flying precision at the level needed for interferometry is possible. Here, we present Pyxis, a ground-based demonstrator for a future small satellite mission with the aim to demonstrate the precision metrology needed for space-based interferometry. We describe the science potential of such a ground-based instrument and detail the various subsystems: three six-axis robots, a multi-stage metrology system, an integrated optics beam combiner, and the control systems required for the necessary precision and stability. We conclude by looking toward the next stage of Pyxis: a collection of small satellites in Earth orbit.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jatis.9.4.045001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In the past few years, there has been a resurgence in studies of space-based optical/infrared interferometry, particularly with the vision to use the technique to discover and characterize temperate Earth-like exoplanets around solar analogs. One of the key technological leaps needed to make such a mission feasible is demonstrating that formation flying precision at the level needed for interferometry is possible. Here, we present Pyxis, a ground-based demonstrator for a future small satellite mission with the aim to demonstrate the precision metrology needed for space-based interferometry. We describe the science potential of such a ground-based instrument and detail the various subsystems: three six-axis robots, a multi-stage metrology system, an integrated optics beam combiner, and the control systems required for the necessary precision and stability. We conclude by looking toward the next stage of Pyxis: a collection of small satellites in Earth orbit.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.