{"title":"In vitro evaluation of the impact of a bioceramic root canal sealer on the mechanical properties of tooth roots","authors":"Ya-Hui Wang, Si-Yi Liu, Yan-Mei Dong","doi":"10.1016/j.jds.2023.10.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Bacground/purpose</h3><p>Endodontically treated teeth are more prone to vertical root fracture with the mechanical property changes to some extent during root canal treatment. This study aimed to investigate the effects of a bioceramic sealer on the mechanical properties of tooth roots.</p></div><div><h3>Materials and methods</h3><p>Dentin discs were dried by two different methods (ethanol drying and paper points drying) and then filled with a BC sealer named iRoot SP. SEM and EDS were used to analyze the newly formed minerals in dentin tubules. Elastic modulus and hardness of the secondary dentin in areas proximal to the primary dentin (PD-SD) and areas proximal to canal or iRoot SP (SD-C/SD-iRoot SP) were measured using nanoindentation technique. The compressive strength of roots filled with iRoot SP were tested by compressive loading test.</p></div><div><h3>Results</h3><p>(1) Penetration and mineralization: Paper points drying was more conducive to iRoot SP adhesion, spreading and penetration into the dentin tubules than 95% ethanol drying. (2) Micromechanical properties: After filling root canal with iRoot SP, the elastic modulus and hardness of SD-iRoot SP were higher than those of PD-SD (<em>P</em> = 0.001 and <em>P</em> = 0.000). (3) Fracture resistance: The compressive strength of the roots filled with iRoot SP was not significantly different from that of the roots unprepared and unfilled (<em>P</em> = 0.957), but was higher than that of the roots prepared and unfilled (<em>P</em> = 0.009).</p></div><div><h3>Conclusion</h3><p>Excessive drying (95% ethanol drying method) is not conducive to the penetration and mineralization of the BC sealer iRoot SP into dentin tubules. The good bioactivity of iRoot SP was responsible for increasing the elastic modulus and hardness of dentin, which strengthened the prepared roots.</p></div>","PeriodicalId":15583,"journal":{"name":"Journal of Dental Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1991790223003483/pdfft?md5=a22df6d945473513fb6085387a293200&pid=1-s2.0-S1991790223003483-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1991790223003483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Bacground/purpose
Endodontically treated teeth are more prone to vertical root fracture with the mechanical property changes to some extent during root canal treatment. This study aimed to investigate the effects of a bioceramic sealer on the mechanical properties of tooth roots.
Materials and methods
Dentin discs were dried by two different methods (ethanol drying and paper points drying) and then filled with a BC sealer named iRoot SP. SEM and EDS were used to analyze the newly formed minerals in dentin tubules. Elastic modulus and hardness of the secondary dentin in areas proximal to the primary dentin (PD-SD) and areas proximal to canal or iRoot SP (SD-C/SD-iRoot SP) were measured using nanoindentation technique. The compressive strength of roots filled with iRoot SP were tested by compressive loading test.
Results
(1) Penetration and mineralization: Paper points drying was more conducive to iRoot SP adhesion, spreading and penetration into the dentin tubules than 95% ethanol drying. (2) Micromechanical properties: After filling root canal with iRoot SP, the elastic modulus and hardness of SD-iRoot SP were higher than those of PD-SD (P = 0.001 and P = 0.000). (3) Fracture resistance: The compressive strength of the roots filled with iRoot SP was not significantly different from that of the roots unprepared and unfilled (P = 0.957), but was higher than that of the roots prepared and unfilled (P = 0.009).
Conclusion
Excessive drying (95% ethanol drying method) is not conducive to the penetration and mineralization of the BC sealer iRoot SP into dentin tubules. The good bioactivity of iRoot SP was responsible for increasing the elastic modulus and hardness of dentin, which strengthened the prepared roots.
期刊介绍:
he Journal of Dental Sciences (JDS), published quarterly, is the official and open access publication of the Association for Dental Sciences of the Republic of China (ADS-ROC). The precedent journal of the JDS is the Chinese Dental Journal (CDJ) which had already been covered by MEDLINE in 1988. As the CDJ continued to prove its importance in the region, the ADS-ROC decided to move to the international community by publishing an English journal. Hence, the birth of the JDS in 2006. The JDS is indexed in the SCI Expanded since 2008. It is also indexed in Scopus, and EMCare, ScienceDirect, SIIC Data Bases.
The topics covered by the JDS include all fields of basic and clinical dentistry. Some manuscripts focusing on the study of certain endemic diseases such as dental caries and periodontal diseases in particular regions of any country as well as oral pre-cancers, oral cancers, and oral submucous fibrosis related to betel nut chewing habit are also considered for publication. Besides, the JDS also publishes articles about the efficacy of a new treatment modality on oral verrucous hyperplasia or early oral squamous cell carcinoma.