Safety improvements for laboratory handling of energetic materials applying system-theoretic process analysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Karen S. Andrade , Antonio V. Diniz Merladet , Thomas M. Klapötke , Chiara Manfletti
{"title":"Safety improvements for laboratory handling of energetic materials applying system-theoretic process analysis","authors":"Karen S. Andrade ,&nbsp;Antonio V. Diniz Merladet ,&nbsp;Thomas M. Klapötke ,&nbsp;Chiara Manfletti","doi":"10.1016/j.jsse.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Over the past few years, numerous accidents have occurred during dangerous chemical experiments. Although there is a considerable amount of literature on laboratory safety, there is still a lack of systematic research that examines how the various laboratory systems interact and potentially contribute to accidents. The objective of this work is to lessen </span>accidents and incidents<span> related to Handling Energetic Materials in Research Laboratories by utilizing STPA (System-Theoretic Process Analysis). This involves examining unsafe interactions between system components, detecting potential undesired events, and implementing measures to prevent or reduce their impact. Recent literature on laboratory safety, quality standards, and interviews with lab workers were used as data sources for the STPA elaboration. As a result, it was possible to identify Unsafe Control Actions, Loss Scenarios, Causal Factors, and Safety Constraints to be considered to avoid undesired events or to mitigate their consequences during the Energetic Material Handling in research centers. It was also possible to point out key measures that can reduce waste, enhance productivity, allocate resources more effectively, decrease accidents, and, most importantly, mitigate potential hazards in laboratory work. The SPTA analysis presented a way to improve laboratory safety management and ensure a safer and more productive research environment.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723001027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past few years, numerous accidents have occurred during dangerous chemical experiments. Although there is a considerable amount of literature on laboratory safety, there is still a lack of systematic research that examines how the various laboratory systems interact and potentially contribute to accidents. The objective of this work is to lessen accidents and incidents related to Handling Energetic Materials in Research Laboratories by utilizing STPA (System-Theoretic Process Analysis). This involves examining unsafe interactions between system components, detecting potential undesired events, and implementing measures to prevent or reduce their impact. Recent literature on laboratory safety, quality standards, and interviews with lab workers were used as data sources for the STPA elaboration. As a result, it was possible to identify Unsafe Control Actions, Loss Scenarios, Causal Factors, and Safety Constraints to be considered to avoid undesired events or to mitigate their consequences during the Energetic Material Handling in research centers. It was also possible to point out key measures that can reduce waste, enhance productivity, allocate resources more effectively, decrease accidents, and, most importantly, mitigate potential hazards in laboratory work. The SPTA analysis presented a way to improve laboratory safety management and ensure a safer and more productive research environment.

应用系统理论过程分析提高实验室处理含能材料的安全性
在过去的几年里,在危险的化学实验中发生了许多事故。尽管有相当数量的关于实验室安全的文献,但仍然缺乏系统的研究来检查各种实验室系统如何相互作用并可能导致事故。本工作的目的是利用系统理论过程分析(system - theoretical Process Analysis, STPA)来减少与研究实验室处理含能材料有关的事故和事件。这包括检查系统组件之间的不安全交互,检测潜在的不希望发生的事件,并实现防止或减少其影响的措施。最近关于实验室安全、质量标准和对实验室工作人员的采访的文献被用作STPA阐述的数据来源。因此,在研究中心的高能材料处理过程中,可以识别不安全控制措施、损失情景、因果因素和安全约束,以避免不希望发生的事件或减轻其后果。还可以指出可以减少浪费、提高生产力、更有效地分配资源、减少事故以及最重要的是减轻实验室工作中的潜在危险的关键措施。SPTA分析提出了一种改进实验室安全管理、确保更安全、更高效的研究环境的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信