{"title":"Kinetics of direct and water-mediated tautomerization reactions of nucleobases at low temperatures ⩽200 K","authors":"Judith Würmel, John M. Simmie","doi":"10.1002/kin.21696","DOIUrl":null,"url":null,"abstract":"<p>Detailed chemical kinetic mechanisms for the synthesis of complex organic molecules in the interstellar medium are at an early stage of developement. That such synthesis must take place is well-known from chemical analysis of sampled asteroids. As molecular complexity increases the number of possible structural isomers also increases with the consequence that the nascent species may adopt a different spatial arrangement, to the lowest energy one. As part of a program of investigations of the hydrogen atom transfer reaction or tautomerization of imidic acid–amide species H-O=C-N- <math>\n <semantics>\n <mo>⇌</mo>\n <annotation>$\\rightleftharpoons$</annotation>\n </semantics></math> O=C-N-H we have studied the kinetics for a number of nucleobases, namely cytosine, thymine and uracil where a cyclic form of tautomerism (lactim–lactam) is encountered. Together with a fourth, 5-aza-uracil (1,3,5-triazine-2,4(1<i>H</i>,3<i>H</i>)-dione), we report on the rates of reaction at low temperatures 50–200 K for both the direct unimolecular process and the similar transformation mediated by an additional water molecule. We show that these tautomerization reactions can be categorized into three classes, and highlight the importance of quantum mechanical tunneling on the rate constants at these low temperatures. We further present some thermochemistry data, such as formation enthalpies, entropies, isobaric heat capacities and enthalpy functions.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21696","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21696","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detailed chemical kinetic mechanisms for the synthesis of complex organic molecules in the interstellar medium are at an early stage of developement. That such synthesis must take place is well-known from chemical analysis of sampled asteroids. As molecular complexity increases the number of possible structural isomers also increases with the consequence that the nascent species may adopt a different spatial arrangement, to the lowest energy one. As part of a program of investigations of the hydrogen atom transfer reaction or tautomerization of imidic acid–amide species H-O=C-N- O=C-N-H we have studied the kinetics for a number of nucleobases, namely cytosine, thymine and uracil where a cyclic form of tautomerism (lactim–lactam) is encountered. Together with a fourth, 5-aza-uracil (1,3,5-triazine-2,4(1H,3H)-dione), we report on the rates of reaction at low temperatures 50–200 K for both the direct unimolecular process and the similar transformation mediated by an additional water molecule. We show that these tautomerization reactions can be categorized into three classes, and highlight the importance of quantum mechanical tunneling on the rate constants at these low temperatures. We further present some thermochemistry data, such as formation enthalpies, entropies, isobaric heat capacities and enthalpy functions.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.